Posted on Leave a comment

Key Points of Yufeng Inverter YF6800B Manual: Overview of Operation Methods, Terminal Start-up, External Potentiometer Speed Control Settings (with Specific Parameters), Fault Diagnosis and Resolution.

YF6800B Series Yufeng Inverter Manual Key Points Introduction

I. Operation Overview

The Yufeng Inverter YF6800B series boasts a straightforward operation process, primarily encompassing power-on/off and parameter settings. Upon powering on, ensure a stable power supply before initiating the inverter through the start button on the control panel or remote signals. To power off, first halt motor operation via the control panel or remote signals before cutting off the inverter’s power supply for device safety. Regarding parameter settings, users can navigate through the control panel’s buttons or connect to a computer using dedicated software to access the parameter setting mode, enabling precise adjustments to key parameters such as frequency, voltage, and current limits to meet diverse operational demands across various working conditions.

II. Terminal Start Configuration Method

Terminal start represents a commonly utilized control method for inverters, with its setup process encompassing wiring and parameter configuration.

  1. Wiring: Adhere to the wiring diagram outlined in the manual, connecting the inverter’s RUN (operate) and STOP (halt) terminals to the corresponding output terminals of external control devices like PLCs or buttons. Ensure secure and reliable connections, avoiding looseness or short circuits.
  2. Parameter Configuration: Navigate to the terminal control-related options within the inverter’s parameter settings to activate terminal control mode. Specific parameter configurations may include:
    • Input Point Function Configuration: Assign the RUN and STOP terminals’ corresponding input points to control start and stop operations, respectively.
    • Multi-speed Configuration (if applicable): Configure additional input points to correspond with distinct speed segments for multi-speed control.
    • Forward/Reverse Configuration (if required): Establish forward and reverse control logic to ensure the motor rotates in the anticipated direction.

III. External Potentiometer Speed Regulation Configuration Method

External potentiometer speed regulation offers a simple and intuitive means of speed adjustment, also encompassing wiring and parameter configuration.

  1. Wiring: Connect the external potentiometer’s output terminal to the inverter’s analog input terminal (e.g., AI1), with the potentiometer’s ends respectively wired to power and ground, forming a complete circuit. Select an appropriate power supply voltage and potentiometer resistance range to ensure precision and stability in speed regulation.
  2. Parameter Configuration: Locate the analog input-related options within the inverter’s parameter settings for the following configurations:
    • Input Source Configuration: Assign AI1 as the speed reference source.
    • Input Range Configuration: Match the inverter’s input range with the potentiometer’s output range.
    • Gain Configuration: Adjust the gain parameter to alter speed regulation sensitivity, facilitating smooth motor speed adjustment according to the potentiometer’s output.

IV. Fault Diagnosis and Resolution Methods

During the utilization of the Yufeng Inverter YF6800B, various faults may arise. Below are some common faults and their corresponding diagnosis and resolution methods:

  1. Overcurrent Protection: Inspect if the motor and load are excessively large or short-circuited, adjusting the load or replacing the motor as necessary. Additionally, verify if the inverter’s output current settings are reasonable.
  2. Overvoltage/Undervoltage Protection: Check if the input power supply voltage remains stable within the specified range. If voltage fluctuations are significant, implement voltage stabilization measures.
  3. Overheat Protection: Ensure the inverter’s cooling fan operates normally, cleaning dust and debris from the heat sink. If the ambient temperature is excessively high, adopt cooling measures.
  4. Communication Failure: Verify the secure and reliable connection of communication lines, along with accurate communication parameter settings. Attempt to restore communication by re-powering or restarting the device.
  5. Control Malfunction: Inspect if the control signal input is accurate and the control logic aligns with the set requirements. For complex control logic, utilize professional tools for fault location and analysis.

By adopting these methods, users can swiftly diagnose and resolve faults encountered during inverter operation, ensuring safe and stable device functioning.

Posted on Leave a comment

Mitsubishi E700(E720,E740) Inverter Operation Guide: Terminal Start, Potentiometer Speed Control, and Fault Handling

Mitsubishi E700 Inverter Operation Guide: Terminal Start, Potentiometer Speed Control, and Fault Handling

The Mitsubishi E700 series inverter is widely used in various industrial control applications due to its high performance and reliability. This guide aims to introduce the terminal start method, potentiometer frequency control, and analyze common fault codes and their solutions for this series of inverters.

Mitsubishi Inverter E700 Series Terminal Control Mode Wiring Diagram

I. Terminal Start Method
The terminal start function of the Mitsubishi E700 inverter allows users to control the inverter’s start and stop via external signals. Here are the basic steps to achieve terminal start:

Set the Pr.79 Operation Mode Selection Parameter:
Adjust the Pr.79 parameter to the appropriate operating mode for external control. For example, setting it to “2” puts the inverter in external operation mode, while “3” allows joint control via the operation panel and external signals.
Wiring:
Connect the STF (forward start signal) and STR (reverse start signal) terminals to the external control device. These signals are usually dry contact signals that initiate forward or reverse rotation when they are ON.
Ensure the voltage level of the control circuit matches the inverter’s requirements.
Testing and Debugging:
After wiring and parameter settings, conduct functional tests to ensure the inverter responds correctly to external start signals.
II. Potentiometer Frequency Control
The Mitsubishi E700 inverter supports frequency adjustment via an external potentiometer, allowing for motor speed control. Here’s how to achieve it:

Parameter Settings:
Set the Pr.73 Analog Input Selection parameter to allow terminal 2 or 4 to receive analog signals (based on the inverter model and configuration).
Set Pr.161 to “1” to enable the M knob as a potentiometer mode, allowing frequency adjustment through rotating the M knob or an external potentiometer.
Wiring:
Connect the potentiometer’s output signal to the corresponding analog input terminal of the inverter (e.g., terminal 2 or 4).
Adjust the analog input gain and offset parameters (such as Pr.125 and C2) according to the potentiometer’s resistance range and output voltage/current range.
Debugging:
Rotate the potentiometer and observe the inverter’s output frequency changes to ensure the speed control function works properly.
III. Fault Codes and Solutions
During operation, the Mitsubishi E700 inverter may encounter various faults, displaying corresponding error codes. Here are some common fault codes and their solutions:

E.OC1 (Overcurrent During Acceleration):
Cause: Motor stall, too short acceleration time setting, or improper motor capacity selection.
Solution: Check the motor and load for abnormalities, extend the acceleration time, and adjust the motor capacity selection.
E.OV1 (Regenerative Overvoltage During Acceleration):
Cause: Excessive regenerative energy generated during motor deceleration, causing high DC bus voltage in the inverter.
Solution: Extend the deceleration time, enable the regenerative braking function (e.g., connect braking resistors or braking units).
E.THT (Inverter Overload):
Cause: Heavy load, high ambient temperature, or poor heat dissipation.
Solution: Reduce the load, improve heat dissipation conditions, or increase the inverter capacity.
E.OC3 (Overcurrent During Deceleration):
Cause: High load inertia during deceleration, too short deceleration time setting.
Solution: Extend the deceleration time or enable the regenerative braking function.
Er1 (Write Prohibited Error):
Cause: Attempting to modify parameters while writes are prohibited.
Solution: Check the Pr.77 Parameter Write Selection setting to ensure parameter writes are allowed.
By mastering the terminal start, potentiometer speed control functions, and fault handling methods of the Mitsubishi E700 inverter, you can effectively enhance equipment efficiency, stability, and reduce maintenance costs. We hope this guide aids you in using the Mitsubishi E700 series inverter.

Posted on Leave a comment

Maintenance and Care Guidelines for NETZSCH TG209 Thermogravimetric Analyzer Ensuring Optimal Performance and Longevity

Maintenance and Care for NETZSCH TG209 Thermogravimetric Analyzer: Ensuring Long-Term Stability and Measurement Accuracy

Physical picture of the NIO TG209 thermogravimetric analyzer

Maintaining and caring for the NETZSCH TG209 Thermogravimetric Analyzer is crucial to ensure its long-term stability and measurement accuracy. Here are some key steps and considerations for proper maintenance:

I. Daily Cleaning

  1. Cleaning Sample Pans: Keep sample pans clean before and after each measurement. Use air blowing or appropriate cleaning solutions to clean them, ensuring samples are not damaged.
  2. Cleaning Temperature Controller: Regularly clean the temperature controller with cleaning solutions or air blowing to ensure accurate temperature settings.
  3. Cleaning Computer: Clean the computer’s internal and external components, as well as input/output devices, at least once a year.
Dismantling and Cleaning Diagram of Naichi TG209 Thermogravimetric Analyzer

II. Component Inspection and Replacement

  1. Inspecting Accessories: Regularly inspect the analyzer’s accessories, such as heating elements, controllers, and temperature sensors, to ensure they are in good condition. Replace any aged or damaged components promptly.
  2. Replacing Filters: Based on usage, regularly replace oil absorption filters, filter elements, and gas filters to prevent contaminants from affecting measurement results.
  3. Checking and Replacing Sealing Rings: Regularly inspect the main unit and analyzer for any oil leaks. Replace sealing rings or gaskets if necessary.
Actual calibration diagram of thermogravimetric analyzer

III. Software and System Settings

  1. Software Updates: Keep the analyzer’s control software up to date to utilize the latest features and bug fixes.
  2. System Configuration: Ensure all system settings, such as temperature range and heating rate, are correctly configured to meet experimental requirements.

IV. Regular Maintenance

  1. Professional Maintenance: Request regular maintenance services from NETZSCH or authorized service centers, including deep cleaning, calibration, and performance checks.
  2. Long-Term Storage: If the analyzer will not be used for an extended period, follow the manufacturer’s recommendations for storage and maintenance to prevent component aging and damage.

V. Operational Considerations

  1. Sample Preparation: Ensure samples are uniform powders, and sample pans are dry to reduce measurement errors.
  2. Operational Procedures: Follow the NETZSCH TG209 Thermogravimetric Analyzer’s operating procedures and safety guidelines to ensure operator and equipment safety.
  3. Maintenance Logs: Establish a maintenance log to record the time, content, and replaced components of each maintenance activity, allowing for tracking of the equipment’s maintenance history and performance changes.

VI. Specific Maintenance Tasks

  1. Cleaning Support Rods: After prolonged use, support rods may accumulate residue from sample decomposition, affecting test accuracy. Regularly burn support rods in air or oxygen atmospheres at high temperatures to remove residue (typically once a week, depending on sampling frequency and instrument contamination).
  2. Furnace Maintenance: For models like the NETZSCH TG209F1 with ceramic furnaces, pay special attention to the furnace’s corrosion resistance and sealing. Regularly inspect the furnace for cracks or damage and repair promptly.

By considering these aspects of daily cleaning, component inspection and replacement, software and system settings, regular maintenance, operational considerations, and specific maintenance tasks, you can ensure the long-term stability and measurement accuracy of your NETZSCH TG209 Thermogravimetric Analyzer.

Posted on Leave a comment

Difuss DR5 Series Motor Soft Starter: External Terminal Control Operation and Fault Code Handling Methods

Difuss DR5 Series Motor Soft Starter: External Terminal Control Operation and Fault Code Handling Methods


Introduction

The Difuss DR5 Series Motor Soft Starter is an advanced device specifically designed for smooth motor startup and shutdown, widely applied in industrial automation. This article delves into the operational methods for external terminal control and outlines the fault codes along with their corresponding handling procedures, facilitating users in better utilizing and maintaining this equipment.

DR5 series Defuss soft start main circuit wiring diagram

I. External Terminal Control Operation Methods

1. External Terminal Configuration

The DR5 Series Soft Starter offers an extensive range of external terminal interfaces for remote control and status feedback. Users should connect external control signals (such as start, stop, reset, etc.) to the corresponding terminals based on their actual needs. Refer to the wiring diagram in the device’s manual for specific terminal configuration.

2. Start Operation

  • Power On: First, ensure that the power supply to the soft starter is correctly connected, and the motor wiring is accurate.
  • External Start Signal: Send a start signal (typically a normally open contact closure) to the start terminal of the soft starter. Subsequently, the soft starter will initiate the predefined start sequence, smoothly initiating motor rotation.

3. Stop Operation

  • External Stop Signal: Transmit a stop signal (also typically a normally open contact closure) to the stop terminal of the soft starter. The soft starter will then gradually reduce the motor’s speed to a stop, following the configured stop mode (e.g., free coasting, soft stop).

4. Reset Operation

  • Fault Reset: When the soft starter stops due to a fault, address the fault source first. Then, send a reset signal (either a pulse signal or a sustained closure signal) to the reset terminal to restore the soft starter to its normal state.

II. Fault Codes and Handling Methods

1. Common Fault Codes

During operation, the DR5 Series Soft Starter may encounter various faults, with corresponding fault codes displayed on its screen. Here are some common fault codes and their possible causes:

  • F01: Overcurrent Fault. It could be caused by excessive motor load or incorrect motor parameter settings.
  • F02: Overload Fault. The motor has been operating in an overloaded state for an extended period.
  • F03: Overheat Fault. The internal temperature of the soft starter is too high, potentially due to poor heat dissipation or a high ambient temperature.
  • F04: Phase Loss Fault. The input power supply or motor is missing one or more phases.
  • F05: Communication Fault. Communication with the host computer or remote control system has been interrupted.

2. Handling Methods

  • Check Power Supply and Motor: Verify that the input power supply is normal, the motor wiring is accurate, and there are no short circuits or open circuits.
  • Adjust Parameters: Adjust the relevant settings of the soft starter, such as startup time and stop mode, according to the actual motor parameters.
  • Improve Heat Dissipation: Clean dust around the soft starter, ensure proper ventilation, and reduce the ambient temperature.
  • Check Communication Lines: Inspect the communication lines with the host computer or remote control system to ensure stable and reliable connections.
  • Restart the Device: After addressing the fault and resetting, attempt to restart the soft starter to observe whether it returns to normal operation.

Conclusion

The Difuss DR5 Series Motor Soft Starter is a powerful and user-friendly motor control device. By correctly configuring the external terminals, mastering operational methods, and promptly handling fault codes, users can fully leverage its performance advantages, achieving smooth motor startup and shutdown while enhancing production efficiency and equipment safety. We hope this article provides valuable guidance for users in utilizing and maintaining the DR5 Series Soft Starter.

Posted on Leave a comment

KAIZ Series AC Servo Drive User Manual: Comprehensive Guide for Selection, Installation, Operation, and Troubleshooting

I. JOG Jogging Operation Process

The JOG mode allows users to directly control the start, stop, and reverse of the servo motor through buttons, commonly used for manual debugging and positioning. Below are the specific steps for JOG jogging operation:

  1. Connect Control Signals:
    • Ensure that the control signal cable CN1 of the servo driver is correctly connected to the corresponding controller or manual operation panel.
    • Set the Servo Enable (SON) to OFF, CCW Drive Inhibit (FSTP) and CW Drive Inhibit (RSTP) both to ON, or disable the drive inhibit function using parameter PA20.
  2. Power On the Control Circuit:
    • Turn on the control circuit power supply of the servo driver (note that the main circuit power supply should remain off for now).
    • The display of the servo driver will light up. Check for any alarm messages, and if any, inspect the connection wiring.
  3. Set Control Mode:
    • Enter the parameter setting interface and set the Control Mode Selection (Parameter No. 4) to JOG mode (value 3).
  4. Power On the Main Circuit:
    • After confirming no alarms or abnormalities, turn on the main circuit power supply.
    • Set the Servo Enable (SON) to ON, and the motor will enter an excited state but remain at zero speed.
  5. Perform JOG Operation:
    • In JOG mode, press and hold the Up key (↑) to make the motor run forward at the preset JOG speed (set in Parameter No. 22); release the key, and the motor will stop and remain at zero speed.
    • Press and hold the Down key (↓) to make the motor run reverse at the preset JOG speed; release the key, and the motor will stop and remain at zero speed.
Standard wiring method for servo position control mode

II. Position Mode Operation Process

The position mode allows users to control the precise position of the servo motor by sending position commands. Here are the specific steps for position mode operation:

  1. Set Basic Parameters:
    • Ensure the Servo Enable (SON) is set to OFF, and CCW Drive Inhibit (FSTP) and CW Drive Inhibit (RSTP) are both set to ON.
    • Enter the parameter setting interface and set the Control Mode Selection (Parameter No. 4) to Position Mode (value 0).
    • According to the output signal method of the controller, set Parameter No. 14 (Position Command Pulse Input Mode) and the appropriate electronic gear ratio (No. 12 and No. 13).
  2. Connect Position Command Signals:
    • Connect the position controller’s output signals to the corresponding position command input terminals of the servo driver (e.g., CN1-22/5/14/23 pins).
  3. Power On and Start:
    • Turn on both the control circuit and main circuit power supplies. After confirming no alarms or abnormalities, set the Servo Enable (SON) to ON, and the motor will enter an excited state.
    • Operate the position controller to send position commands to the servo driver, driving the motor to move precisely to the designated position.
Standard wiring method for servo speed control mode

III. Speed Mode Operation Process

The speed mode allows users to control the rotation speed of the servo motor by sending speed commands. Here are the specific steps for speed mode operation:

  1. Set Basic Parameters:
    • Ensure the Servo Enable (SON), Speed Selection 1 (SC1), and Speed Selection 2 (SC2) are all set to OFF, and CCW Drive Inhibit (FSTP) and CW Drive Inhibit (RSTP) are also OFF, or use parameters for direct control.
    • Enter the parameter setting interface and set the Control Mode Selection (Parameter No. 4) to Speed Mode (value 1).
    • Set the internal speed parameters No. 24 to No. 27 as needed.
  2. Connect Speed Command Signals:
    • Connect the output signals of the speed controller to the speed command input terminals of the servo driver (e.g., through control terminal CN2 or internal speed selection).
  3. Power On and Start:
    • Turn on both the control circuit and main circuit power supplies. After confirming no alarms or abnormalities, set the Servo Enable (SON) to ON, and the motor will enter an excited state.
    • Operate the speed controller to send speed commands to the servo driver, driving the motor to rotate at the commanded speed.

IV. Fault Codes and Solutions

  1. Err-01: IPM Module Fault
    • Cause: Circuit board failure, low supply voltage, damaged motor insulation, etc.
    • Solution: Check the driver connections, confirm normal supply voltage, and replace the faulty driver or motor.
  2. Err-03: OCU Overcurrent
    • Cause: Short circuit in U, V, W phases of the driver, poor grounding.
    • Solution: Check the driver connections, ensure proper grounding, and replace the faulty driver.
  3. Err-07: Encoder Fault
    • Cause: Incorrect encoder wiring, encoder damage, or faulty cable.
    • Solution: Check encoder wiring, replace the encoder or cable.
  4. Err-08: Speed Deviation
    • Cause: Excessively high input command pulse frequency, improper acceleration/deceleration time constants.
    • Solution: Correctly set the input pulse frequency and acceleration/deceleration time constants, check encoder status.
  5. Err-09: Position Deviation
    • Cause: Incorrect position command, encoder damage.
    • Solution: Check position commands and encoder status, reset position parameters.

By following these steps and solutions, users can effectively operate the KaiZheng Servo C&B series servo driver in JOG mode, position mode, and speed mode, and promptly address potential fault codes for better Google indexing.

Posted on Leave a comment

Principles, usage methods, precautions, maintenance methods, and key points for high-voltage inverters (taking the Senlan SBH series as an example)

I. High-Voltage Inverter Principles

The Senlan SBH series of high-voltage inverters utilize advanced multi-level unit series technology, which combines multiple low-voltage power units in series to achieve direct high-voltage input to high-voltage output conversion. Its core principles encompass several crucial components:

Circuit schematic diagram of unit series high-voltage inverter
  1. Phase-Shift Transformer: Employing a multi-secondary phase-shift design, this transformer converts grid high voltage into multiple low-voltage outputs for the power units. The phase-shift technology effectively reduces harmonic currents on the grid side, enhancing power quality.
  2. Power Units: Each power unit functions as an independent PWM inverter, capable of outputting voltage waveforms of specific amplitude and frequency. When multiple power units are connected in series, they form a high-voltage output, enabling precise control over high-voltage motors.
  3. Fiber-Optic Communication: High-speed and reliable communication between power units and the control cabinet is facilitated through fiber-optic cables, transmitting control signals and status information to ensure rapid system response and stability.
  4. Main Control System: Located within the control cabinet, this system oversees the logical control and computational processing of the entire inverter system. By receiving external commands and internal feedback signals, it precisely regulates the power units.
Electrical schematic diagram of power unit

II. Usage Method

  1. Installation and Wiring:
    • Install the inverter in a dry, well-ventilated, dust-free environment, keeping it away from flammable and explosive materials.
    • Follow the manual’s guidelines for wiring the main and control circuits, ensuring accurate and secure connections, with special attention paid to high-voltage isolation.
  2. Parameter Setting:
    • Utilize the human-machine interface (HMI) to configure the inverter’s various parameters, including motor settings, control modes, and protection configurations.
    • Adjust acceleration/deceleration times, V/F curves, and other parameters according to specific operating conditions to meet requirements.
  3. Startup and Commissioning:
    • Under safe conditions, follow the manual’s steps to initiate a no-load test of the inverter.
    • Observe the inverter’s operational status and motor response, gradually fine-tuning parameters to achieve optimal performance.

III. Precautions

Basic operation wiring connection
  1. Safety Considerations:
    • Throughout installation, commissioning, and maintenance, ensure power is disconnected and warning signs are displayed to prevent electrocution.
    • Strictly prohibit opening cabinet doors or touching live high-voltage components while the inverter is operational.
    • Operators must undergo professional training, familiarizing themselves with operational procedures and safety precautions.
  2. Environmental Requirements:
    • Verify the inverter’s installation environment complies with manual specifications, preventing damage from excessive temperature, humidity, or corrosive gases.
    • Regularly inspect and clean the inverter’s surroundings, ensuring proper ventilation.
  3. Periodic Inspections:
    • Routinely check the inverter’s terminal blocks, capacitors, resistors, and other components for damage, promptly replacing worn parts.
    • Keep an eye out for abnormal vibrations, noises, or odors emanating from the inverter, addressing any issues promptly.

IV. Maintenance Precautions

  1. Routine Maintenance:
    • Regularly verify the inverter’s operating environment, monitoring factors such as temperature and humidity.
    • Promptly attend to any unusual vibrations, sounds, or odors, investigating and resolving any issues encountered.
    • Schedule regular cleaning of fan filters and heat sinks to maintain optimal cooling performance.
  2. Scheduled Servicing:
    • Conduct a comprehensive inspection and maintenance service every 3 to 6 months.
    • Securely tighten terminal blocks, swap out aging capacitors and resistors, and clean circuit boards and air ducts to prevent dust accumulation.
  3. Professional Repairs:
    • For complex faults or specialized maintenance needs, promptly contact Senlan’s after-sales service team or qualified technicians. Avoid attempting unauthorized disassembly or repairs, which could exacerbate issues or pose safety hazards.
Posted on Leave a comment

Reasons for Slow Speed of Centrifuge Inverter and Solutions

Centrifuge frequency converter control cabinet

Centrifuges, as commonly used separation equipment in laboratories and industrial fields, rely heavily on stable and efficient rotational speed for optimal separation results and productivity. However, in practical applications, users may encounter issues where the centrifuge inverter operates at a sluggish pace, which not only affects separation effectiveness but also increases the risk of equipment failures. This article will analyze the reasons behind the slow speed of centrifuge inverters from multiple perspectives and provide corresponding solutions.

I. Reasons for Slow Speed of Centrifuge Inverter

  1. Excessive Material Load
    When the amount of material being processed by the centrifuge exceeds its design capacity, the rotational speed naturally suffers, leading to sluggish acceleration. In such cases, reducing the material load is necessary to avoid overloading the centrifuge.
  2. Accumulation of Impurities Inside the Centrifuge
    The interior of a centrifuge is prone to accumulating dust and other impurities, which can increase the rotational resistance of the rotor, thereby affecting the speed. Regular cleaning of the centrifuge to maintain equipment cleanliness is crucial to addressing this issue.
  3. Damage to Rotor Bearings
    Damage to rotor bearings can not only cause a decrease in rotational speed but also lead to abnormal noises. Inspecting and replacing damaged rotor bearings can restore the centrifuge to its normal operating speed.
  4. Loose or Worn Drive Belts
    Loose or worn drive belts are common causes of slow centrifuge speed. Regular inspection of belt tension and wear, along with timely replacement of damaged components, can ensure the proper functioning of the centrifuge.
  5. Motor Failures
    Motor failures, such as winding circuit breaks, rotor fractures, or inverter malfunctions, directly impact the rotational speed of the centrifuge. In such situations, motor replacement or electrical circuit repairs are necessary.
  6. Improper Inverter Parameter Settings
    As the key device controlling the centrifuge’s rotational speed, improper settings of the inverter parameters can also lead to sluggish speed. Checking and adjusting the inverter parameters to match the actual requirements of the centrifuge is essential.
  7. Electrical Control System Malfunctions
    Issues with components in the electrical control system, such as adjustable resistors, thyristors, and rectifier diodes, can also cause unstable motor speed. Regular inspection of these components and timely replacement of damaged parts are important measures for maintaining the stability of the centrifuge’s electrical control system.
Centrifuge and control system

II. Solutions

  1. Adjust Material Load
    Reasonably adjust the material load based on the centrifuge’s processing capacity to avoid overload operation.
  2. Regularly Clean the Centrifuge
    Establish a regular cleaning schedule to ensure the centrifuge is free from impurity accumulation and remains clean.
  3. Inspect and Replace Damaged Components
    Regularly inspect the condition of key components such as rotor bearings and drive belts, and promptly replace any damaged parts.
  4. Adjust Inverter Parameters
    Adjust the inverter parameters according to the actual needs of the centrifuge to ensure stable rotational speed and compliance with process requirements.
  5. Enhance Electrical Control System Maintenance
    Regularly inspect the condition of components in the electrical control system, such as adjustable resistors, thyristors, and rectifier diodes, and promptly repair or replace any damaged parts.
  6. Professional Repair and Technical Support
    For complex fault issues, seek the assistance of professional repair personnel and technical support to ensure the centrifuge receives proper maintenance and repair.

III. Conclusion

The slow speed of a centrifuge inverter can be attributed to various factors, including excessive material load, accumulation of impurities inside the centrifuge, damage to rotor bearings, loose or worn drive belts, motor failures, improper inverter parameter settings, and electrical control system malfunctions. By implementing measures such as adjusting material load, regularly cleaning the equipment, promptly replacing damaged components, adjusting inverter parameters, and enhancing electrical control system maintenance, the issue of slow centrifuge inverter speed can be effectively resolved, thereby improving the operational efficiency and stability of the equipment. Additionally, for complex fault issues, seeking professional repair and technical support is essential.

Posted on Leave a comment

External Terminal Start & Potentiometer Speed Control with Password Security and Fault Code Analysis on CDI-EM60 and EM61 Series Inverters from Hangzhou Delixi

The CDI-EM60 and EM61 series variable frequency drives (VFDs) from Hangzhou Delixi boast robust functionalities in industrial control applications. This article delves into the external terminal start and external potentiometer speed control features of these inverters, alongside an overview of their password security and fault code analysis capabilities.

I. External Terminal Start


Pictures of Hangzhou Delixi CDI-EM60 and EM61 series drivers

The CDI-EM60 and EM61 series VFDs support versatile starting methods, including keypad control, terminal control, and communication control. External terminal start is a popular and flexible method, triggering the inverter’s start and stop through external signals.

Setup Steps for External Terminal Start:

  1. Parameter Configuration:
    • Set the P0.0.03 (Operation Control Mode Selection) to 1 for terminal control.
    • Adjust other relevant parameters such as acceleration/deceleration times and frequency sources as needed.
  2. Wiring:
    • Connect external control signals to the corresponding input terminals of the inverter (e.g., DI1, DI2).
    • Ensure compatibility between the external signal source (e.g., pushbuttons, relay contacts) and the inverter input terminals.
  3. Testing:
    • Power on and test if the external control signals correctly trigger the inverter’s start and stop.
    • Fine-tune parameters for a smooth start-up process.

Precautions:

  • Ensure external control signals adhere to the inverter’s electrical specifications.
  • Regularly inspect wiring for secure connections to prevent control failures.
Delixi VFD CDI-EM60 and EM61 External Terminal Control Wiring Diagram

II. External Potentiometer Speed Control

External potentiometer speed control adjusts the inverter’s output frequency by rotating an external potentiometer, thereby regulating motor speed.

Setup Steps for External Potentiometer Speed Control:

  1. Parameter Configuration:
    • Set the P0.0.04 (Frequency Source Selection) to 2 (Keypad Potentiometer) or 1 (External Terminal VF1, if connecting the potentiometer to VF1).
    • Adjust parameters like maximum frequency and acceleration time to suit speed control requirements.
  2. Wiring:
    • Connect the wiper, fixed terminal, and variable terminal of the potentiometer to the corresponding inverter terminals (e.g., VF1, GND).
    • Ensure the potentiometer’s electrical specifications match the inverter’s input requirements.
  3. Testing:
    • Rotate the potentiometer and observe if the inverter’s output frequency varies accordingly.
    • Adjust the potentiometer’s rotation range and inverter parameters for optimal speed control.

Precautions:

  • Regularly check potentiometer connections for reliability to prevent speed instability.
  • Avoid sudden disconnection or short-circuiting of potentiometer wiring during inverter operation.

III. Password Settings and Decoding

The Delixi inverters offer password protection to restrict unauthorized parameter modifications.

Password Setup:

  1. Access the Password Menu:
    • Navigate through the inverter’s keypad to the parameter setting interface.
    • Locate the password-related function code (e.g., P5.0.20) and enter the password setup menu.
  2. Enter the Password:
    • Input a custom 5-digit password.
    • Confirm the password and save changes before exiting the setup menu.

Password Decoding and Recovery:

  • Decoding: Enter the correct password to lift password protection and regain full inverter control.
  • Password Recovery: If forgotten, contact the inverter supplier or manufacturer for unlocking or password reset.

IV. Fault Code Analysis

During operation, the Delixi inverters may display fault codes indicating the device’s status and fault types.

  • Err01: Overcurrent During Constant Speed. Possible causes include output circuit shorts or load surges. Inspect and resolve issues before restarting the inverter.
  • Err02: Overcurrent During Acceleration. Might stem from motor/circuit shorts or inadequate acceleration time. Adjust parameters or check wiring.
  • Err04: Overvoltage During Constant Speed. Verify input voltage and bus voltage readings.
  • Err07: Module Fault. Could indicate inverter module damage, requiring replacement or professional service.
  • Err10: Motor Overload. Check for motor blockage or excessive loads, adjust motor protection parameters, or reduce the load.

Consulting the inverter manual’s fault code table enables swift troubleshooting and ensures uninterrupted production.

In conclusion, the CDI-EM60 and EM61 series VFDs from Hangzhou Delixi excel in industrial control with their versatile starting mechanisms, precise speed regulation, robust security features, and intuitive fault diagnosis. Mastering these functionalities optimizes device performance and enhances operational safety.

Posted on Leave a comment

Understanding and Resolving FAULT 7086 Alarm in ACS380 and ACS Series (ACS180, ACS530, ACS580, ACS880) Inverters

Introduction

When using ABB’s ACS series inverters, including ACS180, ACS530, ACS580, and ACS880, users may encounter the FAULT 7086 alarm code, which is not explicitly mentioned in the manuals for these models. This article delves into the reasons behind this alarm and provides comprehensive solutions to help users quickly identify and resolve the issue.

Fault 7086 of ABB drive

Background of FAULT 7086 Alarm

Although the operation manuals for ACS180, ACS530, ACS580, and ACS880 do not directly mention FAULT 7086, the explanation for this alarm code is found in the ACS380 (specifically designed for crane applications) manual. FAULT 7086 indicates “AI Overvoltage in I/O Module,” meaning that an overvoltage has been detected at the analog input (AI) port.

Cause Analysis

AI Port Overvoltage: When the input voltage at the AI port exceeds the set upper limit (typically 10VDC or a configurable value such as 7.5VDC), the inverter triggers the FAULT 7086 alarm to protect internal circuits from damage.

AI Signal Mode Change: If the AI signal level exceeds the acceptable range, the inverter may attempt to automatically switch the AI to voltage mode. If this fails, it will trigger the alarm.

Circuit Board Component Issues: Although the circuit board designs of ACS180, ACS530, ACS580, and ACS880 differ, they share a core control system. Issues with the mainboard, drive board connections, or related components can also lead to unexpected FAULT 7086 alarms.

The posistion of I/O module

Solutions

1.Check AI Voltage:

(1)Use a multimeter to measure the actual input voltage at the AI port and confirm if it exceeds the set upper limit.

(2)Adjust the AI port’s voltage upper limit setting, if necessary, to suit the current operating 2.environment.

(1)Inspect External Connections:

Verify that the external signal source for the AI port is normal, with no abnormal fluctuations or damage.

(2)Check the connection cables and plugs for the AI port to ensure they are securely connected and free from looseness.

3.Examine Circuit Boards and Modules:

(1)If suspecting a circuit board or module failure, first inspect the cables and plugs between the mainboard and drive board, cleaning dust and ensuring good contact.

(2)If possible, try replacing suspected circuit boards or modules to verify if the issue is resolved.

4.Refer to Relevant Documentation:

(1)Although the ACS180, ACS530, ACS580, and ACS880 manuals do not directly mention FAULT 7086, refer to the ACS380 manual for more information on handling AI overvoltage.

(2)Contact our technical team for free technical consultation and assistance

5.Reset the Inverter:

After ruling out external hardware issues, attempt to reset the inverter to see if the alarm clears.

I/O extension module of acs380

Conclusion

The FAULT 7086 alarm in ACS series inverters, including ACS180, ACS530, ACS580, and ACS880, can occur under specific circumstances not directly mentioned in their manuals. By thoroughly analyzing the alarm’s background and causes, and implementing appropriate solutions, users can effectively identify and resolve the issue. During the process, ensure safe operation and back up important data to prevent unexpected losses.

Posted on Leave a comment

Operation Guide and Fault Code Analysis of TECO Inverter 7200GS

The TECO Inverter 7200GS, as a high-performance universal inverter, is widely used in industrial automation due to its support for various control modes including V/F control, Sensorless Vector Control, PID energy-saving control, and V/F+PG closed-loop control. This article will provide a detailed introduction to key operations of the TECO Inverter 7200GS, including panel startup, frequency speed regulation, password function setup and unlocking, as well as fault code analysis.

TECO inverter image

I. Panel Startup

1. Inspection and Preparation

  • Verify the Inverter Installation Environment: Check if the surrounding temperature, humidity, and ventilation conditions meet the requirements, ensuring no corrosive gases or dust.
  • Electrical Inspection: Ensure all electrical connections, particularly the input/output power supply and motor connections, are correct.

2. Power-On Startup

  • Connect the main power supply to the inverter. The “CHARGE” indicator light will illuminate, indicating that the internal capacitor is charging.
  • Once the “CHARGE” indicator light goes out, it means charging is complete, and the inverter is ready for operation.

3. Panel Operation

  • Use the standard LCD or LED operator panel to switch to the “DRIVE” mode.
  • Press the “RUN” button to start the inverter, and the motor will subsequently operate.

II. Panel-Set Frequency Speed Regulation

1. Enter Frequency Setting Mode

  • In the “DRIVE” mode, navigate to the frequency setting interface using the number keys and direction keys on the panel.
  • Use the direction keys to select the “Frequency Command” option and input the desired frequency value using the number keys.

2. Speed Regulation Operation

  • After entering the frequency value, press the “ENTER” key to confirm, and the inverter will adjust the motor speed according to the set frequency value.
  • Smooth speed regulation can be achieved by continuously changing the frequency value.

III. Password Function Setup and Unlocking

1. Password Setup

  • With the inverter stopped, enter the parameter setting mode through the panel.
  • Locate the parameter related to password setup (e.g., Sn-xx) and input the desired password value according to your needs.
  • Save the parameter settings and exit the setup mode after completing the password setup.

2. Password Unlocking

  • To unlock a set password protection, re-enter the parameter setting mode.
  • Input the correct password value, save, and exit the setup mode to remove the password protection.

IV. Fault Code Analysis

1. UV1 (Under Voltage)

  • Fault Description: The DC main circuit voltage is too low during operation.
  • Possible Causes: Insufficient power supply capacity, voltage drop in wiring, improper inverter power supply voltage selection, etc.
  • Countermeasures: Check the power supply voltage and wiring, verify the power supply capacity and system, install an AC reactor, etc.

2. OC (Over Current)

  • Fault Description: The inverter output current exceeds 200% of the rated current.
  • Possible Causes: Short acceleration time, short circuit or grounding at the output terminals, motor capacity exceeding the inverter capacity, etc.
  • Countermeasures: Extend the acceleration time, check the output terminal wiring, replace the inverter with an appropriate capacity, etc.

3. OL3 (Over Load)

  • Fault Description: Excessive output torque triggers the over-torque protection.
  • Possible Causes: Abnormal mechanical load, improper over-torque detection level settings, etc.
  • Countermeasures: Inspect the mechanical operation, set an appropriate over-torque detection level, etc.

4. PG0 (PG Disconnection)

  • Fault Description: Disconnection of the PG (encoder) signal.
  • Possible Causes: Poor contact or disconnection in the PG wiring.
  • Countermeasures: Check the PG wiring to ensure proper contact.

V. Conclusion

The TECO Inverter 7200GS, as a powerful inverter, offers flexible speed regulation, startup, and protection functions. Through this article, users can better understand and master key operations such as panel startup, frequency speed regulation, password settings, and fault code analysis, thereby enhancing equipment efficiency and stability. In practical applications, users should configure inverter parameters according to specific needs and environmental conditions to ensure proper operation.