Posted on Leave a comment

Operation Guide for Yaskawa Inverter H1000 Series User Manual

I. Operation Panel Function Introduction and Usage Instructions

The operation panel of the Yaskawa Inverter H1000 series serves as its control hub, enabling parameter setting, monitoring of operating status, and fault diagnosis. The primary buttons and functions on the operation panel include:

Function diagram of Yaskawa INVERTER H1000 operation panel
  • ESC: Exits the current mode or cancels operations.
  • RUN: Starts the inverter.
  • STOP: Stops the inverter.
  • ENTER: Confirms inputs or enters parameter settings.
  • RESET: Resets faults.
  • ALM: Displays fault or warning messages.
  • DIGIT: Selects digits during parameter setting.
  • OPRATOR: The operation panel display, which shows various information and parameters.

Parameter Initialization

Parameter initialization restores the inverter’s settings to the factory defaults. The steps are as follows:

  1. Enter Initialization Mode: Press the “ESC” button on the operation panel, then press “ENTER” to enter the parameter setting mode.
  2. Select Initialization Parameter: Use the “DIGIT” buttons to select parameter “A1-03” and press “ENTER”.
  3. Set Initialization Value: Set the value of “A1-03” to “2220” or “3330” for initialization of 2-wire or 3-wire sequential control, respectively.
  4. Confirm and Save: Press “ENTER” to confirm the setting, and the inverter will automatically restart and complete the initialization.

Setting and Resetting Passwords

To protect the inverter settings from unauthorized changes, passwords can be set. The steps are as follows:

  1. Enter Password Setting Mode: In the parameter setting mode, select “A1-04” and press “ENTER”.
  2. Enter Password: Use the “DIGIT” buttons to input a 4-digit password and press “ENTER” to confirm.
  3. Confirm Password: Enter the same password again to confirm the setting and press “ENTER”.

To reset the password, simply enter the correct password in the password input interface to unlock the parameter settings.

Wiring diagram of Yaskawa INVERTER H1000 series control circuit

II. Terminal Start/Stop and External Potentiometer Speed Adjustment

To achieve terminal start/stop and external potentiometer speed adjustment, the corresponding control terminals need to be connected and parameters set accordingly.

Wiring Instructions

  1. Start/Stop Terminals: Typically, use terminals S1 (Run) and S2 (Stop). Closing (connecting) terminal S1 starts the inverter, while closing terminal S2 stops it.
  2. External Potentiometer: Use terminal A1 as the input terminal for the external potentiometer. Connect the potentiometer’s output to terminal A1 and adjust the potentiometer to change the frequency command.

Parameter Settings

  1. Run Command Selection: Set parameter “b1-01” to “10” to select the operation panel as the frequency command source.
  2. Multi-function Input Settings: Set parameter “H1-01” to “04” (Run command) and “H1-02” to “05” (Stop command), corresponding to the functions of terminals S1 and S2, respectively.
  3. Analog Input Gain and Offset: Adjust parameters “H3-03” (Gain) and “H3-04” (Offset) according to the output range of the external potentiometer to ensure that the frequency command changes proportionally with the potentiometer output.

III. Crane Control Wiring and Parameter Setup

In crane applications, special attention must be paid to safety control and precise speed regulation.

Wiring Instructions

  1. Main Circuit Wiring: Connect the inverter’s R/L1, S/L2, and T/L3 terminals to the crane motor according to its voltage and power requirements.
  2. Control Circuit Wiring: In addition to the basic start/stop terminals, emergency stop, limit switches, and other safety control terminals also need to be connected.
  3. PG (Encoder) Wiring: For cranes requiring precise speed control and positioning, connect the PG encoder and output its signals to the inverter’s PG option card.

Parameter Settings

  1. Control Mode Selection: Set parameter “A1-02” to the appropriate vector control mode (e.g., Vector Control with PG) to ensure precise speed and position control.
  2. PG Parameter Settings: Set parameters such as “F1-06” (PG Output Division Ratio) and “F1-12/F1-13” (PG Gear Ratio) according to the encoder specifications.
  3. Safety Function Settings: Enable the external emergency stop function and set the relevant parameter, such as “H2-01” (Multi-function Contact Output Selection), to output an emergency stop signal.
  4. Speed Search Function: For heavy-duty applications like cranes, it is recommended to enable the speed search function to improve stability and safety during startup. Set parameter “b3-01” to effective and adjust other related parameters as needed.

IV. Fault Code Meanings and Solutions

The Yaskawa Inverter H1000 series has comprehensive fault self-diagnosis functions. When a fault occurs, the operation panel will display the corresponding fault code. Below are the meanings of some common fault codes and their solutions:

  • CPF00/CPF01: Control circuit fault. Possible causes include incorrect control circuit wiring or damaged circuit boards. The solution is to check the control circuit wiring and replace the circuit board if necessary.
  • oH: Overheating of the heatsink. Possible causes are high ambient temperature, excessive load, or a faulty cooling fan. The solution is to improve ventilation, reduce the load, or replace the cooling fan.
  • Uv: Undervoltage in the main circuit. Possible causes are low supply voltage or phase loss in the power supply. The solution is to check the supply voltage and wiring to ensure they are normal.
  • oL1: Motor overload. Possible causes are excessive load or improper motor parameter settings. The solution is to reduce the load or reset the motor parameters.

When a fault occurs in the inverter, first check the fault code displayed on the operation panel to identify the cause and follow the corresponding solution. If the issue cannot be resolved, promptly contact a professional technician for repairs.

Through this operation guide, users can better understand and operate the Yaskawa Inverter H1000 series, ensuring its stable operation in various applications.

Posted on Leave a comment

User Manual Guide for INVT INVERTER Goodrive 10 (GD10) Series

I. Function Introduction of VFD Operation Panel (Keyboard)

The operation panel (keyboard) of the INVT Goodrive 10 series INVERTER serves as the primary interface for user interaction. This keyboard is highly functional, capable of performing basic operations, status monitoring, and parameter settings on the INVERTER. Here are some key functions:

Function diagram of the operation panel of the NVIDIA GD10 Inverter
  1. Status Indicators:
    • RUN/TUNE: Indicates whether the INVERTER is running.
    • FWD/REV: Indicates the forward or reverse rotation status of the motor.
    • LOCAL/REMOT: Indicates the current control mode (local keyboard control or remote communication control).
    • TRIP: Indicates whether the INVERTER is in a fault state.
  2. Digital Display Area: A 5-digit LED display for showing set frequencies, output frequencies, currents, voltages, and various monitoring data and alarm codes.
  3. Operation Buttons:
    • PRG/ESC: Programming key for entering or exiting the parameter setting menu.
    • DATA/ENT: Confirmation key for validating parameter settings or entering the next menu level.
    • UP/DOWN: Increment/decrement keys for adjusting parameter values.
    • SHIFT: Right shift key for selecting different modification bits during parameter setting.
    • RUN/STOP/RST: Run/Stop/Reset keys for controlling the start, stop, and fault reset of the INVERTER.
    • QUICK/JOG: Quick multifunction key, whose function is set by parameter P07.02 and can include jogging, display state switching, etc.
Control Circuit and Terminal Wiring Diagram of AD10 Inverter from Envision

II. Methods for Setting and Deleting Passwords on the INVERTER

  1. Setting a Password:
    • Enter the parameter setting menu (press PRG/ESC). Locate parameter P07.00 and set it to a non-zero value, which will serve as the user password. After exiting the parameter setting menu, password protection will be activated.
  2. Deleting a Password:
    • Set parameter P07.00 to 0 to disable password protection. Note that password deletion must be performed without password protection in place.

III. Steps to Restore the INVERTER to Factory Defaults

To restore the INVERTER to its factory settings, follow these steps:

  1. Enter the parameter setting menu (press PRG/ESC).
  2. Locate parameter P00.18 and set it to 1 (restore default values). The INVERTER will begin restoring default parameters, which may take a few seconds.
  3. After restoration, parameter P00.18 automatically reverts to 0. At this point, the INVERTER has been restored to its factory settings.

IV. Specific Steps for Terminal Start/Stop and External Potentiometer Speed Adjustment

Wiring Steps:

  1. Start/Stop Terminal Wiring:
    • Connect the start signal from the external control circuit to the S1 terminal of the INVERTER and the stop signal to the S2 terminal.
    • Ensure that the control circuit power matches the INVERTER’s control power.
  2. External Potentiometer Wiring:
    • Connect the output end of the potentiometer to the AI1 terminal (analog input terminal) of the INVERTER.
    • Connect the power end of the potentiometer to an appropriate power source, typically a 10V DC power supply.

Parameter Setting Steps:

  1. Set the Run Command Channel:
    • Enter the parameter setting menu and locate parameter P00.01. Set it to 1 (terminal run command channel).
  2. Set the Analog Input Function:
    • Locate parameter P00.06 and set it to 1 (keyboard analog AI1 setting). This way, the frequency of the INVERTER will be determined by the analog input from the AI1 terminal.
  3. Adjust Other Related Parameters (if necessary):
    • Adjust acceleration time, deceleration time, maximum output frequency, and other parameters based on actual application requirements to achieve optimal control performance.

V. Analysis and Solution of INVERTER Fault Codes

The Goodrive 10 series INVERTER features comprehensive fault protection functions, capable of monitoring the INVERTER’s operating status in real-time and providing fault codes when issues arise. Here are some common fault codes and their solutions:

  1. OV1 (Acceleration Overvoltage):
    • Possible Causes: Excessively high input voltage; too short deceleration time.
    • Solutions: Check if the input voltage is normal; increase the deceleration time as needed.
  2. OC1 (Acceleration Overcurrent):
    • Possible Causes: Excessive load; low grid voltage.
    • Solutions: Check if the load exceeds the INVERTER’s rated load; check if the grid voltage is normal.
  3. UV (Bus Undervoltage Fault):
    • Possible Causes: Low grid voltage; input power phase loss.
    • Solutions: Check if the grid voltage is normal; check for input power phase loss.
  4. OH2 (Inverter Module Overheat Fault):
    • Possible Causes: High ambient temperature; poor heat dissipation.
    • Solutions: Improve the INVERTER’s heat dissipation conditions; reduce the ambient temperature.

When the INVERTER encounters a fault, users should first refer to the fault code to identify possible causes and apply the corresponding solutions. If the problem persists, contact INVT’s technical support for assistance.

VI. Conclusion

The user manual for the INVT Goodrive 10 series INVERTER serves as an essential reference for users to operate and maintain the INVERTER. This document provides detailed information on the INVERTER’s operation panel functions, password setting and deletion, steps to restore factory defaults, specific procedures for terminal start/stop and external potentiometer speed adjustment, as well as fault code analysis and solutions. We hope this content will help users better utilize and maintain the Goodrive 10 series INVERTER.

Posted on Leave a comment

What Does “LL” Fault Mean on Eura Drives E800 Series Inverter, and How to Solve It?

Introduction

The E800 series of Eura Drives inverters is a widely used device in the field of industrial control, with its stability and reliability being crucial to users’ production activities. However, in practical applications, users may encounter various faults and issues, among which the “LL” fault displayed upon power-up is a particularly perplexing one.

The label of Eura Drives E800 Inverter

The Meaning of “LL” Fault

Upon power-up, if the E800 series inverter of Eura Drives displays the “LL” fault code and cannot be reset by pressing any buttons, it typically indicates a specific issue with the inverter. Unfortunately, the user manual may not explicitly state the meaning of the “LL” fault code. However, within the communication section, under the explanation of communication address meanings, the operational status parameter address 1005 mentions the inverter status: “OXOC (LL)”.

Despite the brief mention, there is no further elaboration on the “LL” fault code in the manual. Nevertheless, based on our experience and understanding of inverter fault codes, the “LL” fault on Eura Drives E800 series inverters generally indicates a low voltage fault. This means that the input voltage to the inverter is below the acceptable range, causing the inverter to malfunction and display the “LL” fault code.

Physical image of Eura Drives inverter displaying LL fault

Solutions to the “LL” Fault

To resolve the “LL” fault on Eura Drives E800 series inverters, the following steps can be taken:

  1. Check the Input Voltage:
    • Verify that the input voltage supplied to the inverter is within the specified range. For the E800 series, the input voltage range is typically three-phase 380V to 480V (with a tolerance of +10% to -15%) or single-phase 220V to 240V (with a tolerance of ±15%).
    • Use a voltmeter to measure the voltage at the inverter’s input terminals.
  2. Inspect the Power Supply:
    • Ensure that the power supply is stable and reliable. Check for any potential issues such as voltage fluctuations, surges, or drops that may affect the input voltage to the inverter.
  3. Review the Wiring:
    • Examine the wiring between the power source and the inverter to ensure that it is correct and free from any damage or loose connections.
  4. Check the Fuse and Circuit Breaker:
    • Verify that the fuse or circuit breaker protecting the inverter’s power supply circuit is not blown or tripped. Replace it if necessary.
  5. Consult the Manual and Technical Support:
    • If the issue persists after checking the above points, refer to the user manual for additional troubleshooting steps or contact Eura Drives’ technical support for assistance.
  6. Reset the Inverter:
    • Once the issue with the input voltage has been resolved, try resetting the inverter by pressing the reset button or cycling the power to see if the “LL” fault code clears.

Conclusion

The “LL” fault on Eura Drives E800 series inverters is generally indicative of a low voltage issue. By carefully checking the input voltage, power supply, wiring, fuse, and circuit breaker, and taking appropriate corrective actions, users can often resolve this fault and restore normal operation of the inverter. If the problem persists, seeking assistance from the manufacturer’s technical support is recommended.

Posted on Leave a comment

HARS VFD HS710 Series User Manual Usage Guide

I. Introduction to VFD Operation Panel Functions

The HARS VFD HS710 series features a comprehensive and user-friendly operation panel. The panel primarily includes the following keys and indicators:

  • PRG Programming Key: Used to enter or exit the menu for parameter modifications.
  • ENTER Confirmation Key: Confirms parameter settings or enters the menu.
  • ▲ Increment Key and ▼ Decrement Key: Used to increment or decrement data or function codes.
  • Shift Key: Selects the parameter modification bit and display content.
  • RUN Operation Key: Starts the VFD in keyboard operation mode.
  • STOP/RESET Stop/Reset Key: Stops VFD operation or resets faults.
  • FUNC Multi-function Quick Key: Switches functions according to needs.
HS710 Haishang Inverter Operation Panel Function Diagram

Setting Passwords and Restoring Factory Defaults

  1. Setting Passwords:
    • Enter the parameter setting interface (press the PRG key).
    • Use the increment and decrement keys to select FE.29 (User Password) and press the ENTER key to enter.
    • Use the numeric keys to enter the password value (0–65535) and press the ENTER key to confirm. The password setting will take effect after a 3-minute delay.
  2. Restoring Factory Defaults:
    • Enter the parameter setting interface.
    • Select F7.12 (Parameter Initialization) and press the ENTER key to enter.
    • Use the increment key to select “2: Restore all user parameters to factory settings” and press the ENTER key to confirm. After the operation is complete, the parameters will automatically be restored to their factory default values, and F7.12 will automatically reset to 0.

II. Terminal Start/Stop and External Potentiometer Speed Regulation Wiring

Wiring Steps

  1. Power Wiring:
    • Connect the three-phase power supply to the R, S, T terminals of the VFD, ensuring the power supply matches the VFD.
    • Install an air circuit breaker (NPB) between the power supply and input terminals to protect the circuit.
  2. Motor Wiring:
    • Connect the U, V, W terminals of the motor to the corresponding U, V, W terminals of the VFD.
    • Ensure the motor is properly grounded by connecting the E terminal of the VFD to the motor housing.
  3. Start/Stop Wiring:
    • Connect the positive power supply (+24V) of the control circuit to the +24V terminal of the VFD.
    • Connect one end of the external start button to the +24V terminal and the other end to the X1 terminal (Forward Operation).
    • Connect one end of the external stop button to the COM terminal and the other end to the X1 terminal (Forward Operation) or another stop function terminal as configured.
  4. External Potentiometer Speed Regulation Wiring:
    • Connect the center tap of the external potentiometer to the GND terminal of the VFD.
    • Connect one end of the potentiometer to the +10V terminal.
    • Connect the other end of the potentiometer to the AI1 terminal (Analog Input 1) to receive the speed control signal.

Parameter Settings

  1. Operation Command Channel Selection:
    • Enter the parameter setting interface.
    • Select F0.02 (Operation Command Channel Selection) and set it to “1: Terminal Operation Command Channel”.
  2. Analog Input Settings:
    • Select F4.13 (AI1 Input Lower Limit) and F4.15 (AI1 Input Upper Limit) and set appropriate values according to the output range of the potentiometer.
    • Select F4.14 (AI1 Lower Limit Corresponding Physical Quantity Setting) and F4.16 (AI1 Upper Limit Corresponding Physical Quantity Setting) and set them to “Speed Command” so that the potentiometer can control the output frequency.
  3. Frequency Source Selection:
    • Select F0.03 (Main Frequency Source A Selection) and set it to “2: AI1 Analog Given”.
Wiring Diagram for HS710 Haishang Inverter

III. Fault Code Analysis and Troubleshooting

The HARS VFD HS710 series may display various fault codes during operation. Below is an analysis and troubleshooting guide for some common fault codes:

  1. E-01: Overcurrent During Acceleration
    • Possible Causes: Too short acceleration time, overloaded load, improperly set V/F curve.
    • Solutions: Extend the acceleration time, check for abnormal loads, adjust the V/F curve.
  2. E-02: Overcurrent During Deceleration
    • Possible Causes: Too short deceleration time, excessive load inertia.
    • Solutions: Extend the deceleration time, connect an external braking resistor or braking unit.
  3. E-08: Motor Overload
    • Possible Causes: Improperly set V/F curve or torque boost, low grid voltage, overloaded load.
    • Solutions: Adjust the V/F curve and torque boost, check the grid voltage, reduce the load, or select a VFD with a higher power rating.
  4. E-12: Input Phase Loss
    • Possible Cause: Missing phase in the power input.
    • Solution: Check the power supply and wiring to ensure a normal three-phase power supply.
  5. E-13: Output Phase Loss or Current Imbalance
    • Possible Cause: Missing phase in output U, V, W.
    • Solution: Check the output wiring to ensure correct motor connections.

By carefully reading the user manual and following the above guide, users can effectively operate and maintain the HARS VFD HS710 series, ensuring the normal operation of the equipment and extending its service life.

Posted on Leave a comment

Operation Guide for MICOVERT 2003 Series Inverter User Manual from Michael

  1. Operation Methods for Basic Menus
    The operation of the MICOVERT 2003 series inverter from Michael is primarily completed through the Handheld Programmer HPG60. The HPG60 is equipped with an LCD display capable of showing 4 lines of text, 6 buttons, and a red LED indicator. Below are the operation methods for the basic menus:
Michael INVERTER MICOVERT 2003 series operation panel

1.1 Entering Menus
Selecting Main Menu: Use the “LEFT” or “RIGHT” buttons to choose from 8 main menus, such as “Speed”, “Speed Curve”, “Start/Stop”, etc.
Entering Submenu: Press the “DOWN” button to enter the submenu of the selected main menu.
Selecting Parameters: In the submenu, use the “DOWN” or “UP” buttons to scroll through and select parameters.

1.2 Setting Parameters
Changing Parameter Values: Use the red “UP” or “DOWN” buttons to select new parameter values.
Saving or Exiting: If the parameter change is correct, press the “ENTER” key to save the new value; if you need to discard the change, press the “ESC” key to exit.

1.3 Start/Stop Menu Settings
The Start/Stop menu is used to set parameters related to the start and stop of the inverter, such as start delay and braking ramp.

Start Delay: Adjusts the time for the motor to start with the brake on to avoid abnormalities caused by delays in contactor and control system actions. The setting range is 0-1000ms.
Braking Ramp: Adjusts the deceleration ramp from V0 speed to zero speed to improve stopping accuracy and reduce vibration. The setting range is 0.01-1.00 m/s².

1.4 Speed Menu Settings
The speed menu is used to set various operating speeds of the inverter, including re-leveling speed, inspection speed, creep speed, medium speed, and high speed.

Re-leveling Speed (Vn): The setting range is 0.5-100 r.p.m., used for re-leveling due to position changes caused by wire rope elongation after elevator unloading.
Inspection Speed (Vi): The setting range is 10-1500 r.p.m., used for inspection operation on the car roof.
Creep Speed (V0): The setting range is 1-100 r.p.m., used for deceleration before elevator stopping.
Medium Speed (V1), High Speed (V2/V3): The setting range is 10-3000 r.p.m., used for elevator operation at different speed segments.

Terminal diagram of the Michael INVERTER MICOVERT 2003 series
  1. Input and Output of Control Signals
    2.1 Input of Control Signals
    The input of control signals is mainly achieved through various signal terminals on the inverter. Below are the functions and setting methods of some key signal terminals:

Direction Signals: Include “UP” (up direction) and “DOWN” (down direction) signal terminals. When starting the inverter, direction commands and operation commands need to be given simultaneously.
Inspection Speed Signal (Vinsp): Used to set the inspection speed. When operating at inspection speed, the operation command and direction command need to be withdrawn simultaneously.
Speed Signals (V0, V1, V2, V3): Used to set creep speed, medium speed, and high speed respectively.

2.2 Output of Control Signals
The inverter is equipped with multiple output relays for controlling different functions of the elevator. Below are the functions of some key output relays:

Ready Relay: Engages after the inverter completes its self-check, used for elevator control warning.
Brake Relay: Engages 0.5 seconds after the direction command and speed command are given, causing the mechanical brake contactor to engage.
Operation Relay: Engages when the direction command and speed command are given, and releases 0.5 seconds after the motor reaches zero speed.

  1. Multi-Speed Operation
    The MICOVERT 2003 inverter supports multi-speed operation. By setting different speed parameters (V0, V1, V2, V3), smooth acceleration and deceleration of the elevator at different stages can be achieved. For example, use lower speeds (V0 or V1) during the elevator start-up phase, higher speeds (V2 or V3) during the stable operation phase, and decelerate to creep speed (V0) again during the stopping phase.
  2. Encoder Interface and Settings
    The MICOVERT 2003 inverter supports various encoder interfaces, including HTL level encoder, TTL level encoder, Resolver interface, absolute encoder, etc. Below are the basic steps for encoder wiring and settings:

4.1 HTL Level Encoder
Wiring: Connect the A phase, B phase, +15VDC, 0VDC, and shield wire of the encoder to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “HTL” and enter the number of pulses per revolution.

4.2 TTL Level Encoder
Wiring: Connect the A phase, B phase, +5VDC, 0VDC, and shield wire of the encoder to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “TTL” and enter the number of pulses per revolution.

4.3 Resolver Interface
Wiring: Use the dedicated conversion board RES01 to connect the output signals (SINUS and COSINUS) of the Resolver to the conversion board, and then connect the conversion board to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “Resolver” and enter the relevant parameters.

4.4 Absolute Encoder
Wiring: Use the dedicated absolute conversion board ABS01 to connect the output signals of the absolute encoder to the conversion board, and then connect the conversion board to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as the corresponding absolute encoder type (e.g., SSI, ENDAT), and enter the relevant parameters.

Wiring diagram for the MICOVERT 2003 series inverter by Michael
  1. Fault Code Identification and Solutions
    When the inverter malfunctions, the LCD display will show the corresponding error code. Users need to take appropriate solutions based on the error code. Below are some common fault codes and their handling methods:

Error 1 (IPM Overcurrent): Check if the motor parameters are correct or if the IPM module is damaged.
Errors 2-4 (U/V/W Phase Overcurrent): Similarly, check the motor parameters or IPM module.
Error 5 (Heat Sink Overtemperature): Check if the cooling system is working normally or reduce the load.
Error 6 (Intermediate Circuit Voltage Too High): Check if the braking resistor is connected normally or damaged.
Error 7 (Intermediate Circuit Voltage Too Low): Check if the main power supply voltage is too low.
Errors 8-9 (Operation Contactor Not Engaged or Main Power Supply Missing a Phase): Check if the contactor or main power supply connection is normal.
Errors 10-16: Involve issues such as missing direction commands, conflicting direction commands, no pulse signal from the encoder, etc. Check the relevant signals and wiring according to the specific situation.

By carefully reading and following the above instructions, users can better operate and maintain the MICOVERT 2003 series inverter from Micor, ensuring its stable operation and efficient performance.

Posted on Leave a comment

Operation Guide for Hpmont HD20 Series Inverter User Manual

I. Introduction to Inverter Operation Panel Functions
1.1 Function of Operation Panel Buttons
The operation panel of the Hpmont HD20 series inverter is equipped with multiple buttons and indicators for controlling the inverter and displaying its status. The main button functions are as follows:

Function Description Diagram of HPMONT VFD HD20 Operation Panel

****: Enter or exit programming mode.
****: When controlled via the operation panel, jog start the inverter.
****: When controlled via the operation panel, start the inverter.
****: When controlled via the operation panel, stop the inverter or perform fault reset.
****: Increment the functional parameter or parameter setting value.
****: Decrement the functional parameter or parameter setting value.
****: Select the modification digit of the set data or cyclically switch the display state parameters between stop/run.
****: Enter the submenu or confirm and save the settings.

1.2 Password Function Setting and Unlocking
To prevent unauthorized modifications, the inverter has a user password protection function. The following are the steps for setting, unlocking, and modifying the password:

Password Setting
Press ** to enter programming mode.
Use and to select parameter F01.00.
Press ** to enter password setting mode, and use and to input the desired password value (00000-65535).
After inputting, press ** to confirm and save, then exit programming mode.

Password Unlocking
If prompted to enter a password during operation panel use, press ** to enter password entry mode.
Use and to input the previously set password.
After inputting, press ** to confirm. If the password is correct, unlocking is successful, and operation can continue.

Password Modification
Press ** to enter programming mode.
Use and to select parameter F01.00.
Press ** to enter password modification mode, and use and to input the new password value.
After inputting, press ** to confirm and save, then exit programming mode.

II. Terminal Start/Stop and External Potentiometer Speed Adjustment Methods
2.1 Terminal Start/Stop Wiring and Parameter Setting
Wiring Method
Forward control terminal (DI1): Connect the forward start signal.
Reverse control terminal (DI2): Connect the reverse start signal.
Common terminal (COM): Connect to the other end of DI1 and DI2.

Parameter Setting
Enter programming mode, set parameter F15.00 to 2 (forward function).
Set parameter F15.01 to 3 (reverse function).
Set other relevant parameters as needed, such as setting F00.11 to 1 (terminal operation command channel).

2.2 External Potentiometer Speed Adjustment Wiring and Parameter Setting
Wiring Method
Connect terminal 1 of the external potentiometer to the +10V terminal of the inverter.
Connect terminal 2 of the external potentiometer to the AI1 terminal of the inverter.
Connect terminal 3 of the external potentiometer to the GND terminal of the inverter.

Parameter Setting
Enter programming mode, set parameter F16.01 to 2 (frequency setting channel).
Adjust F16.05 (AI1 offset) and F16.06 (AI1 gain) as needed to calibrate the speed adjustment range.
Ensure F00.10 is set to 3 (analog setting) to use the external potentiometer for speed adjustment.

HPMONT VFD HD20 series control circuit wiring diagram

III. Analysis and Solutions for Inverter Fault Codes
3.1 Common Fault Codes and Causes
E0001: Overcurrent protection. Possible causes include motor stall, excessive load, or incorrect parameter settings.
E0007: Overvoltage speed loss. Possible causes include excessively short deceleration time settings or excessive load inertia.
E0015: Input phase loss. Possible causes include input power phase loss or loose wiring.
E0016: Output phase loss. Possible causes include motor or cable damage.
E0017: Inverter overload. Possible causes include excessive load or poor heat dissipation.

3.2 Solutions
E0001: Check if the motor and load are normal, adjust parameters F09.07 (motor torque boost) and F09.09 (motor slip compensation gain).
E0007: Increase deceleration time, adjust parameters F19.18 (overvoltage speed loss function selection) and F19.19 (overvoltage speed loss point).
E0015: Check the input power supply and wiring to ensure normal three-phase power.
E0016: Check motor and cable connections to ensure no damage or looseness.
E0017: Check if the load is excessive, improve heat dissipation conditions, adjust parameters F20.01 (overload pre-alarm detection level) and F20.02 (overload pre-alarm detection time).

Summary
This operation guide provides a detailed introduction to the functions of the operation panel, wiring and parameter settings for terminal start/stop and external potentiometer speed adjustment methods, as well as analysis and solutions for common fault codes of the Hpmont HD20 series inverter. By following this guide, users can smoothly operate and maintain the inverter, ensuring normal equipment operation. During operation, please ensure safety and avoid electric shock and other potential risks. For complex issues, please contact Longi electrical technicians for assistance.

Posted on Leave a comment

User Manual for Invt GD300-01A-RT Series VFD Dedicated for Air Compressors – Usage Guide

This guide aims to assist users in better understanding and utilizing the Invt GD300-01A-RT Series VFD, a single frequency converter specifically designed for air compressor control, featuring efficiency, ease of use, and reliability. Below is a detailed usage guide.

GD300-01A-RT menu interface diagram

I. Operating Methods for Controlling Air Compressors

  1. Wiring Method
    Main Circuit Wiring:
    Connect the power input terminals (R, S, T or L1, L2, L3) to the electrical grid.
    Connect the motor output terminals (U, V, W) to the main motor of the air compressor.
    The grounding terminal PE must be grounded with a grounding resistance of less than 10Ω.
    Control Circuit Wiring:
    Connect signal lines, such as pressure sensors and temperature sensors, to the corresponding input terminals (e.g., P1+, P1-) as per actual requirements.
    Connect external control signals (e.g., start, stop, load, unload) to the respective input terminals (e.g., S1, S2, S3).
    If needed, connect fault outputs, alarm outputs, etc., to external devices.
  2. Parameter Settings
    Motor Parameter Settings:
    Enter the “Main Unit Parameter Settings” interface and set parameters such as motor type, rated power, rated frequency, rated voltage, and rated current based on the actual motor nameplate parameters.
    Perform motor parameter self-learning to ensure the VFD can accurately control the motor.
    Air Compressor-Specific Parameter Settings:
    Set the range and calibration points for pressure sensors and temperature sensors.
    Set parameters such as loading pressure, unloading pressure, no-load operating frequency, and minimum loading operating frequency to suit the operational needs of the air compressor.
    Set parameters such as fan control mode and maintenance timeout as required.

II. Using External Terminals for Starting and External Potentiometer for Frequency Adjustment

  1. Wiring Method
    External Start Terminal Wiring:
    Connect the external start signal (e.g., push-button switch) to the S1 terminal (forward start) and the COM terminal.
    For reverse start, connect the signal to the S2 terminal.
    External Potentiometer Wiring:
    Connect the center tap of the external potentiometer to the AI1 terminal (analog input 1).
    Connect the other two terminals of the potentiometer to +10V and GND terminals to provide the required power supply voltage for the potentiometer.
  2. Parameter Settings
    Operation Command Channel Settings:
    Enter the “Basic Function Group” parameter settings and set P00.01 to 1 (terminal operation command channel).
    Frequency Command Selection:
    Set P00.06 to 1 (analog P1-setting) to enable external potentiometer frequency adjustment.
GD300-01A-RT system wiring diagram

III. Setting Password Function and Restoring Factory Settings

  1. Setting Password Function
    Enter the “Human-Machine Interface Group” parameter settings and locate the P07.00 (user password) parameter.
    Enter the desired password value (0~65535) and save the settings.
    After setting the password, the correct password must be entered for parameter modification.
  2. Restoring Factory Settings
    Enter the “Basic Function Group” parameter settings and locate the P00.18 parameter.
    Set P00.18 to 1 (restore default values) and save the settings.
    The VFD will automatically restore to the factory default parameter settings.

IV. Fault Analysis and Handling Methods

  1. Fault Code Query
    When a fault occurs in the VFD, first check the fault code on the VFD panel.
    Refer to the “VFD Faults and Countermeasures” section in the manual based on the fault code to find possible fault causes and corrective actions.
  2. Fault Troubleshooting Steps
    Check the power supply and wiring: Ensure normal power input and secure wiring.
    Check external control signals: Ensure normal input of external control signals (e.g., start, stop, load, unload).
    Check sensor signals: Ensure normal input of signals from pressure sensors, temperature sensors, etc., and correct range and calibration point settings.
    Check the motor and load: Ensure normal motor operation and no abnormalities in the load.
  3. Fault Handling Examples
    Overcurrent Fault (OC1, OC2, OC3):
    Check if the grid voltage is too low.
    Check for short circuits or locked rotor phenomena in the motor and load.
    Increase the acceleration/deceleration time or select a VFD with a higher power.
    Overvoltage Fault (OV1, OV2, OV3):
    Check if the input power voltage is too high.
    Check for energy feedback phenomena and add energy consumption braking components if necessary.
    Undervoltage Fault (UV):
    Check if the grid voltage is too low or fluctuating significantly.

By following this usage guide, users can better grasp the operation of the Invt GD300-01A-RT Series VFD dedicated for air compressors, ensuring stable operation of the air compressor system.

Posted on Leave a comment

ABB VFD ACS510 Series F0035 Fault (Fault 35) Cause Analysis and Troubleshooting Methods

Introduction

The ABB VFD (Variable Frequency Drive) ACS510 series is widely utilized in industrial applications due to its high efficiency, reliability, and ease of maintenance. However, users may encounter various fault alarms during operation, with F0035 (Fault 35) being a relatively common one. This article will combine the content of the ABB VFD ACS510 series user manual with relevant online information to provide a detailed analysis of the causes of F0035 faults and corresponding troubleshooting methods.

ACS510 vfd FAULT 35

Overview of F0035 Fault

The F0035 fault, also known as “OUTPUT WIRING” fault, refers to an alarm triggered by the VFD when it detects incorrect connections between the input power cables and output power cables. According to the ABB VFD ACS510 series user manual, when the drive is stopped, this fault code monitors the correct connection of the input and output power cables. If a connection error is detected, the VFD will alarm and stop working to prevent possible equipment damage or safety accidents.

Cause Analysis of F0035 Fault

1. Incorrect Input Cable Connection

Incorrect input cable connection is one of the main causes of F0035 faults. If the supply voltage is mistakenly connected to the drive output terminal, the VFD will be unable to function correctly and will trigger an F0035 fault alarm. This connection error may result from negligence or misoperation by the wiring personnel.

2. Incorrect Output Cable Connection

In addition to incorrect input cable connections, incorrect output cable connections can also lead to F0035 faults. If the output power cables of the drive are connected improperly, such as reversed phase sequence or phase loss, the VFD will be unable to control the motor correctly, thereby triggering a fault alarm.

3. Capacitance Effect of Input Power Cables

In some cases, even if the input power cables are connected correctly, a large capacitance of the cables may cause false F0035 fault alarms. Especially when the input power cables are connected in a delta configuration, the capacitance effect may be more pronounced. This is because capacitance generates current in AC circuits, interfering with the normal operation of the VFD.

4. Environmental Interference

Environmental factors, such as electromagnetic interference, excessive temperature, and high humidity, may also affect the normal operation of the VFD, triggering F0035 faults. Particularly in industrial settings, electromagnetic interference is a non-negligible issue.

Troubleshooting Methods for F0035 Fault

1. Check and Correct Cable Connections

First, it is necessary to carefully inspect the connections of the input power cables and output power cables. Ensure that the supply voltage is correctly connected to the input terminal of the VFD, and the output power cables are correctly connected to the motor terminal, with phase sequence, phase, and other parameters meeting requirements. If any connection errors are found, they should be corrected immediately.

2. Disable Wiring Fault Detection Using Parameter 3023

If the capacitance of the input power cables is large and frequently triggers false F0035 fault alarms, consider disabling the wiring fault detection function using parameter 3023 WIRING FAULT. In the stopped state of the VFD, set the value of parameter 3023 to 1 to disable wiring fault detection. However, it should be noted that disabling this function may reduce the fault protection capability of the VFD, so it should be used cautiously.

3. Enhance Electromagnetic Interference Protection

For F0035 faults caused by electromagnetic interference, the following measures can be taken for protection:

  • Use shielded cables or twisted pairs with better anti-interference performance;
  • Install filters or isolation transformers at the input and output terminals of the VFD;
  • Install the VFD away from sources of electromagnetic interference, such as high-power motors and high-frequency welding equipment.

4. Improve Operating Environment

To address F0035 faults caused by environmental factors, the following measures can be taken to improve the operating environment:

  • Maintain cleanliness and dryness in the VFD operating environment to avoid the impact of dust and moisture on the VFD;
  • Enhance ventilation and heat dissipation to ensure that the VFD operating temperature remains within the normal range;
  • For VFDs installed outdoors or in harsh environments, add protective covers or take other protective measures.

5. Regular Maintenance and Inspection

Regular maintenance and inspection of the VFD are effective measures to prevent F0035 faults. Maintenance personnel should regularly check cable connections, measure input and output voltages and currents to ensure their normalcy, and clean dust inside the VFD. Additionally, they should pay attention to the operating status and alarm records of the VFD to promptly identify and address potential issues.

Conclusion

The F0035 fault is a common fault alarm in the ABB VFD ACS510 series, with causes including incorrect input cable connections, incorrect output cable connections, capacitance effects of input power cables, and environmental interference. To address these causes, corresponding troubleshooting methods can be adopted, such as checking and correcting cable connections, disabling wiring fault detection using parameter 3023, enhancing electromagnetic interference protection, improving the operating environment, and regular maintenance and inspection. By implementing these measures, the incidence of F0035 faults can be effectively reduced, improving the operational reliability and stability of the VFD.

Posted on Leave a comment

Operation Guide for Mitsubishi VFD FR-D700 (D740,D720)Series User Manual

I. Introduction to VFD Operation Panel Functions
The operation panel of the Mitsubishi VFD FR-D700 series(D740,D720) is straightforward, facilitating various settings and operations for users. The panel primarily includes the following buttons and a rotary potentiometer:

Mitsubishi VFD FR-D700 Operation Panel Function Diagram

RUN: Press this button to start the VFD.
STOP/RESET: Press this button to stop the VFD or reset alarms.
MODE: Mode switching button used to toggle between different setting and display modes.
SET: Confirmation button used to confirm current settings or enter the next menu level.
PU/EXT: Operation mode switching button used to switch between PU (operation panel) mode and EXT (external terminal) mode.
Rotary Potentiometer: Used to manually adjust the output frequency of the VFD.

Setting Operation Modes
The VFD offers multiple operation modes, which can be set via parameter P79:

P79=0: PU operation mode, controlled via buttons and the rotary potentiometer on the operation panel.
P79=2: External operation mode, receiving start, stop, and speed commands via external terminals.

II. Terminal Start/Stop and External Potentiometer Speed Adjustment
Wiring Instructions
To achieve terminal start/stop and external potentiometer speed adjustment, proper wiring to the corresponding terminals of the VFD is required. Typically, the wiring is as follows:

STF (Forward Start): Connect to the normally open contact of an external start button or relay.
STR (Reverse Start): If reverse function is needed, connect to the normally open contact of an external reverse start button or relay.
SD (Stop): Connect to the normally closed contact of an external stop button or relay.
RH, RM, RL (Speed Setting): These terminals are typically used to connect an external potentiometer for speed adjustment. Among them, RH and RL are connected to the two ends of the potentiometer, and RM is connected to the sliding contact of the potentiometer.

Parameter Settings
Apart from proper wiring, relevant parameters need to be set to ensure the VFD operates as expected:

P79: Set to 2 to select external operation mode.
Pr7, Pr8: Set acceleration and deceleration times respectively to suit different application needs.
Pr9: Set the electronic overcurrent protection parameter to protect the VFD and motor from overcurrent damage.

Mitsubishi VFD FR-D700 Series External Wiring Diagram

III. VFD Fault Code Analysis and Solutions
When faults occur in the Mitsubishi VFD FR-D700 series, corresponding error codes are displayed, allowing users to analyze and resolve the faults. Below are some common fault codes and their solutions:

ER1: Overcurrent during acceleration. Check if the motor is overloaded, if there is a short circuit in the output, and if the acceleration time is set too short.
ER2: Overcurrent during constant speed. Check for sudden changes in load, and if there is a short circuit in the output.
ER3: Overcurrent during deceleration. Check for rapid deceleration, if there is a short circuit in the output, and if the motor’s mechanical brake is applied too early.
OL: Overspeed prevention (overcurrent). Check if the motor is overloaded.
TH: Motor overheat. Check if the motor is operating overloaded for a long time, if the ambient temperature is too high, and if the cooling system is functioning properly.
PS: PU stop. Check if the STOP button on the operation panel is pressed.
MT: Main circuit terminal abnormality. Check if the connections of the main circuit terminals are loose or damaged.
uV: Undervoltage protection. Check if the power supply voltage is too low, and if there is a large-capacity motor starting up causing instantaneous voltage drop.

Solutions
For overcurrent faults (ER1, ER2, ER3, OL): First, check if the motor and load are normal, then adjust acceleration time, deceleration time, and electronic overcurrent protection parameters.
For overheating faults (TH): Improve the motor’s cooling conditions, such as adding fans or lowering the ambient temperature.
For PU stop (PS): Confirm if the STOP button was pressed by mistake; if not, check the related control circuits.
For main circuit terminal abnormality (MT): Check and tighten the connections of the main circuit terminals, and replace if damaged.
For undervoltage protection (uV): Check if the power supply voltage is stable, and consider adding a power supply voltage stabilizing device.

The above is the operation guide for the Mitsubishi VFD FR-D700 series user manual, hoping to assist users in practical operations. If encountering other issues during use, it is recommended to refer to the detailed user manual of the VFD or contact professional technicians of longi for consultation.

Posted on Leave a comment

User Guide for Danfoss VLT2800 Frequency Converter


Danfoss VLT2800 Frequency Converter User Guide

1. Introduction to the Operation Panel

The operation panel of the Danfoss VLT2800 frequency converter is designed to be simple and user-friendly, allowing users to control basic functions and adjust parameters. The key components of the panel are:

  1. Display Screen: Shows current status, parameter values, fault codes, etc.
  2. Navigation Keys: Used to navigate between menus and parameters, including arrow keys for up, down, left, and right.
  3. Operation Keys: Includes keys for start, stop, reset, and other control functions for easy operation.
  4. Quick Menu Key: Provides quick access to commonly used menus and parameters.
  5. Change Data Keys: These keys allow users to modify displayed parameters and adjust the operating status of the converter.

With these buttons, users can perform parameter settings, switch operating modes, and monitor the running status of the frequency converter in real-time.

VLT2800 Multi Panel Function Diagram

2. Parameter Initialization and Adjustment

When using the VLT2800 frequency converter for the first time or when restoring factory settings, follow these steps for parameter initialization and adjustment:

  1. Restoring Factory Settings:
  • Enter the main menu and select the “Restore Factory Settings” option. The frequency converter will reset all user settings to default parameters.
  1. Motor Parameter Settings:
    Configure the motor parameters through parameter group 102-106:
  • 102: Motor Power (PM,N): Set the motor’s rated power.
  • 103: Motor Voltage (UM,N): Set the motor’s rated voltage.
  • 104: Motor Frequency (fM,N): Set the motor’s rated working frequency.
  • 105: Motor Current (IM,N): Set the motor’s rated current.
  • 106: Motor Speed (nM,N): Set the motor’s rated speed.
  1. Speed Control Mode:
  • Choose between open-loop or closed-loop speed control to ensure precise control based on application requirements.
VLT2800 Control Circuit Wiring Diagram

3. Start/Stop Function and External Potentiometer Adjustment

1. Start and Stop Functions via Terminals

The Danfoss VLT2800 frequency converter can be started and stopped using terminal connections. Follow these steps for terminal wiring:

  • Start Signal: Connect the start signal to terminals 12 (START) and GND. The converter will start the motor according to the set parameters once the signal is received.
  • Stop Signal: Connect the stop signal to terminals 13 (STOP) and GND. The motor will decelerate and stop as per the set deceleration time when the stop signal is triggered.
  • Reset Function: Connect an external reset signal to terminal 16 (RESET) to reset the converter when needed.
2. External Potentiometer for Speed Adjustment

To adjust the output frequency using an external potentiometer, follow these wiring steps:

  • Potentiometer Wiring:
  • Connect the positive terminal of the potentiometer to terminal 55 (+10V output), the negative terminal to terminal 53 (analog input), and ground to GND.
  • Parameter Settings:
  1. In parameter group 300, set the analog input type and configure terminal 53 to be controlled by the external potentiometer.
  2. Adjust parameters 204 (RefMIN) and 205 (RefMAX) to set the minimum and maximum reference values corresponding to the potentiometer.

By adjusting the potentiometer, the frequency converter’s output frequency can be dynamically controlled, allowing for smooth linear speed regulation from minimum to maximum.

4. Fault Code Analysis and Troubleshooting

The VLT2800 frequency converter features a self-diagnostic function. If a fault occurs during operation, the relevant fault code will be displayed on the control panel. Below are some common fault codes and their solutions:

  1. E1: Overcurrent Protection
  • Cause: Fast motor acceleration, excessive load, or motor short circuit.
  • Solution: Check motor wiring, reduce load, or extend the acceleration time.
  1. E2: Overvoltage Protection
  • Cause: Power supply voltage too high or large voltage fluctuations.
  • Solution: Check if the power supply voltage is within the specified range, and use a voltage stabilizer if necessary.
  1. E3: Undervoltage Protection
  • Cause: Power supply voltage too low or a sudden voltage drop.
  • Solution: Ensure stable power supply and check voltage levels.
  1. E4: Overheating Protection
  • Cause: Poor heat dissipation or high ambient temperature.
  • Solution: Check the cooling system of the converter, ensure the fan is working properly, and reduce the environmental temperature or improve ventilation if needed.
  1. E14: Communication Failure
  • Cause: Communication line fault or loss of communication between the controller and the converter.
  • Solution: Inspect communication cable connections and reconfigure communication parameters.

By setting the correct parameters, ensuring proper wiring, and accurately identifying fault codes, users can ensure the stable operation of the Danfoss VLT2800 frequency converter and troubleshoot issues as they arise.


This guide provides users with a comprehensive overview of the VLT2800 frequency converter, covering panel operation, parameter setup, terminal functions, and troubleshooting to help them get started and maintain smooth operation of the device.