Posted on Leave a comment

Comprehensive Analysis of Smoke and Fire Detectors: Principles, Usage, Common Faults, and Repair Methods — Flame Detectors

I. Overview

Smoke and fire detectors are crucial safety devices widely used in residences, offices, factories, warehouses, and various other settings. They promptly detect smoke and flames from fires and sound alarms upon detecting danger, thus protecting people’s lives and property. By sensing specific physical quantities in smoke and flames (such as infrared radiation, ultraviolet radiation, smoke particles, etc.), these detectors trigger alarms and are an indispensable part of modern fire protection systems.

II. Principles

The working principles of smoke and fire detectors are based on multiple sensor technologies, primarily including photoelectric, ionization, and thermosensitive types.

  • Photoelectric Sensor: Utilizes the scattering or interruption of a light beam to detect the presence of smoke. When smoke enters the detection zone, it scatters or blocks the light beam, causing the light signal received by the photosensitive element to weaken or disappear, thereby triggering an alarm.
  • Ionization Sensor: Judges the presence of flames by detecting changes in ion concentration in the air. Normally, the air in the ionization chamber inside the sensor maintains a certain ion concentration balance. When a flame occurs, it alters the ion concentration in the ionization chamber, triggering an alarm.
  • Thermosensitive Sensor: Detects flames based on temperature changes. When a flame occurs, the surrounding temperature rapidly rises, and the thermosensitive element senses the temperature change, converts the signal into an electrical signal, and triggers an alarm.

Additionally, flame detectors detect flames by detecting specific wavelengths of ultraviolet, infrared, and visible light emitted by flames, combined with recognizing the flickering frequency characteristics of flames, enhancing detection accuracy and reliability.

III. Usage

  • Installation: Choose an appropriate installation location and height based on the characteristics and needs of the usage site. Ensure that the detector is at a suitable distance from areas where smoke or flames may occur and avoid installing it in locations easily obstructed or contaminated.
  • Commissioning: After installation, conduct commissioning and testing to ensure the detector operates normally. Check the detector’s power supply, wire connections, and sensor sensitivity and reliability.
  • Usage: During daily use, regularly inspect the detector’s appearance and functionality. Ensure the detector has sufficient power and no obstructions affect its detection effectiveness.

IV. Faults and Repair Methods

Smoke and fire detectors may encounter various faults during usage, commonly including false alarms, no alarms, and delayed alarms. For different faults, the following repair methods can be adopted:

  • False Alarms:
    • Check if the detector is subject to environmental interferences (such as dust, steam, moisture, etc.) and regularly clean the detector’s surface and internal components.
    • Check if the detector’s installation position and angle are correct to avoid false alarms.
    • If the detector is severely aged, consider replacing it with a new one.
  • No Alarms:
    • Check if the detector’s power supply and wiring are normal and ensure stable power supply.
    • Check if the detector’s sensor is damaged or ineffective, and replace the sensor if necessary.
    • If the controller malfunctions, it may be necessary to replace the entire controller or detector.
  • Delayed Alarms:
    • Check if the detector’s sensing threshold setting is reasonable and adjust it if necessary.
    • Clean the detector’s surface and internal components to ensure detection sensitivity.
    • Check if the detector’s communication lines and control center are normal to ensure accurate data transmission.

Regular comprehensive maintenance and repairs of detectors are also crucial measures to ensure their normal operation. This includes cleaning the detector’s surface and internal components, checking power supply and wire connections, and testing detector functionality.

V. Summary

As an essential component of modern fire protection systems, the accuracy and reliability of smoke and fire detectors are directly related to people’s lives and property safety. By understanding their working principles and usage methods, and mastering common faults and repair methods, we can ensure that detectors play their due role in critical moments. Simultaneously, regular maintenance and repairs are key to ensuring the long-term stable operation of detectors.

VI. Flame Detectors Repaired by Longi Electromechanical Company

  1. Honeywell
    • FS24X: Multi-Spectrum Flame Detector
    • FS20X: Multi-Spectrum Flame Detector
    • C7050: UV Flame Detector
    • C7052: IR Flame Detector
  2. Siemens
    • CC62P: Flame Detector
    • CC62: Flame Detector
  3. Spectrex
    • SharpEye Series: SharpEye 40/40I Triple IR (IR3) Flame Detector, SharpEye 40/40R Single IR Flame Detector, SharpEye 40/40L-LB UV/IR Flame Detector, SharpEye 40/40U-UB UV Flame Detector
  4. Dräger
    • Flame 2000 Series: Flame 2100 (UV), Flame 2300 (IR), Flame 2500 (UV/IR), Flame 2700 (Multi IR)
  5. Kidde
    • Kidde Sentinel Series: Sentinel F5000 IR Flame Detector, Sentinel F3000 UV/IR Flame Detector, Sentinel F2000 UV Flame Detector
  6. Det-Tronics
    • X3301: Multi-Spectrum IR Flame Detector
    • X5200: UV Flame Detector
    • X9800: UV/IR Flame Detector
    • X2200: UV Flame Detector
  7. MSA Safety
    • FL4000H: Multi-Spectrum IR Flame Detector
    • FL3100H: UV/IR Flame Detector
    • FL3110: UV Flame Detector
  8. Emerson
    • Rosemount 975 Series: Rosemount 975UR (UV/IR), Rosemount 975IR (IR), Rosemount 975MR (Multi IR), Rosemount 975UV (UV)
  9. Fike
    • FL3100H: UV/IR Flame Detector
    • FL3110: UV Flame Detector
    • FL3111: Single IR Flame Detector
  10. General Monitors
    • FL4000H: Multi-Spectrum IR Flame Detector
    • FL3100H: UV/IR Flame Detector
    • FL3110: UV Flame Detector
  11. Simtronics
    • MultiFlame Series: MultiFlame DF-TV7-T (Triple IR), MultiFlame DF-TV7-V (UV), MultiFlame DF-TV7-VIR (UV/IR)
  12. Oldham (Teledyne)
    • OLCT 100 Series: OLCT 100 IR, OLCT 100 UV/IR, OLCT 100 UV
  13. Micropack
    • FDS301: Visual Flame Detector
    • FDS300: Triple IR Flame Detector
  14. Tyco
    • FLAMEVision Series: FLAMEVision FV300
  15. UTC (United Technologies)
    • FS20X: Multi-Spectrum Flame Detector
    • FS24X: Multi-Spectrum Flame Detector

Longi Electromechanical Company has long been engaged in repairing smoke and fire detectors, with nearly 30 years of experience. We can quickly repair various instruments and also recycle and sell various smoke and fire detectors. Welcome to consult us.

Leave a Reply

Your email address will not be published. Required fields are marked *