Posted on Leave a comment

What should be done if the CONVO VSD is not connected to the motor and the frequency of the motor cannot be adjusted?

A 5.5kW Konwo frequency converter sent for repair, the customer said: there is output, but it cannot operate with load, the motor cannot rotate, and the operating frequency cannot be adjusted. Check the main circuit, rectifier and inverter circuits, all of which are normal. Power on, measure the three-phase output voltage without load and it is normal. Connect a 1.1kW no-load motor and start the frequency converter to run. The frequency cannot rise near one or two hertz, and the motor has a pause and produces a creaking sound. No overload or OC fault is reported. Stop and restart, still the same.
Disconnect the 550V DC power supply of the inverter module and send another 24V DC low-voltage power supply to check the driving circuit. Check the capacitors and other components of the driving circuit and driving power supply circuit, and they are all normal. The positive and negative pulse currents output by the three arm drive circuit on the inverter output have reached a certain amplitude, and there should be no problem driving the IGBT module; But when measuring the positive and negative pulse currents output by the three arm drive circuit, a module fault is reported. Analyze the reason, as the DC current range of the multimeter is directly short circuited to measure the triggering terminal, the internal resistance of the DC current range of the multimeter is small, which greatly lowers the positive excitation voltage output by the driving circuit, such as below 10V. This voltage cannot trigger the IGBT tube normally and reliably. Therefore, the module fault detection circuit detects the voltage drop of the IGBT tube and reports a fault in the OC module. The fault was actually caused by the measurement method. When the probe was connected in series with a resistance of more than ten ohms and the output current of the drive circuit was measured, the OC fault was not reported. Check the signal output circuit of the current transformer again, and it is also normal. During operation, no fault signal is reported.

I feel like there’s nowhere else to go and I can’t find the cause of the malfunction. Is the problem with the driver, module, current detection, or other circuits? The fault was not detected throughout the afternoon. For a moment, I felt a bit indifferent and worried.

  1. Does the CPU detect abnormal current during startup and take measures to slow down?
  2. Is the current limiting action made by the driving circuit due to abnormal driving or poor module performance?
    Under low-frequency operation, try to short-circuit the shunt resistors of the U, V, and W output circuits to make the CPU exit the frequency reduction and current limiting action, which is ineffective;
    Restoring the parameters to their factory values (suspecting that this operating mode may have been manually set) is invalid.
    Start the frequency converter and observe carefully: after the speed rises to 3Hz, it drops to 0Hz, and repeat this process. The motor stops running.
    After significantly increasing the acceleration time, it steadily increased to 3Hz and then decreased to 0Hz, indicating that there were no abnormalities in the driving and other circuits. This operating phenomenon should be formed based on the signal emitted by the CPU, which seems to act as a current limiting action based on the current signal.
    The self deceleration during the starting process is generally due to the following two reasons:
  1. During the startup process, the CPU detects a sharp increase in abnormal current values and performs immediate frequency reduction processing. When the current returns to within normal values, it then increases the frequency for operation;
  2. During the startup process, the CPU detects an abnormal drop in the DC voltage of the main circuit and performs immediate frequency reduction processing. When the voltage of the main circuit returns to within normal values, it then increases the frequency for operation;
    After the drive and current detection circuits have no issues, maintenance should be carried out from the perspective of voltage.
    The anomalies caused by voltage can also be divided into two aspects:
  3. Caused by abnormal DC voltage detection circuit in the circuit (drift of reference voltage, variation of sampling resistance, etc.). This signal causes the CPU to mistakenly assume that the voltage is too low, and therefore takes measures to reduce the output frequency to maintain a stable voltage;
  4. The abnormality of the main DC circuit causes a low voltage (loss of capacity of the energy storage capacitor, failure to close the charging short circuit contactor, etc.), which is detected by the detection circuit and causes the CPU to take a frequency reduction action during the startup process.
    Reinstall and power on the machine, and conduct a motor test. When powered on, no sound of the charging contactor closing was heard. Check that the contactor coil is AC 380V, taken from the R and S power supply incoming terminals. Loose coil lead terminals caused poor contact, and the contactor failed to engage. The large current during startup creates a significant voltage drop on the charging resistor. The sharp drop in the DC voltage of the main circuit is detected by the voltage detection circuit, prompting the CPU to issue a frequency reduction command.

The reason for taking many detours is that the machine only performed frequency reduction treatment when the voltage dropped, and did not report an undervoltage fault. In this case, other models often have reported undervoltage faults. Also due to the reason of no load, during frequency reduction processing, the voltage quickly rises and the frequency continues to rise. Then the voltage drops again, and the frequency converter reduces the frequency processing, allowing the voltage to rise again. This repeated process causes the frequency converter to increase speed, decrease to zero speed, pause and then increase speed again, and then decrease to zero speed. But it does not shut down and does not report any fault signals.
It’s a bit funny that such a simple fault should be thoroughly investigated on its normal circuit. Due to its failure to report fault codes, the inspection steps were somewhat bewildered.
This article is shared with everyone – when the charging contactor of the Kangwo inverter is in poor contact, it may be adjusted in a frequency reduction manner during the starting process in a light load state, without reporting an undervoltage fault signal and implementing shutdown protection. In the loaded starting state, the DC circuit should have a significant drop and should be able to report an undervoltage fault.
The frequency converter is an organic combination of software and hardware circuits, and the above fault phenomena are formed under the automatic control of software programs. If we only rely on the fixed thinking pattern formed by surface phenomena and past experience, without in-depth analysis and detailed observation, we would really treat this simple fault as a difficult one to repair.

Leave a Reply

Your email address will not be published. Required fields are marked *