Posted on Leave a comment

User Guide for GTAKE GS100M Spindle Drive Manual

I. Introduction to the Operation Panel Functionality and Password, Function Code Settings

GS100M Operation Panel Function Diagram

The operation panel of the GTAKE GS100M spindle drive serves as the primary interface for user interaction. The panel comprises five buttons: SET (confirm), MODE (return), ▲ (increase), ▼ (decrease), and ◀◀ (shift). These buttons enable users to configure drive functions and adjust parameters.

Password Function Setup and Removal

To protect the drive from unauthorized modifications, the GS100M offers a password protection feature. Users can set a password by configuring function code A0-00. To remove the password, restore the value of A0-00 to the default 0000.

Function Code Display and Protection Settings

Function code A0-01 controls the display range of function codes. Users can select to display all function codes, only certain function codes, or only those with values different from the factory defaults. Additionally, function code A0-02 provides function code protection; when set to 1, only A0-00 and this function code can be modified, locking other function codes to prevent accidental changes.

Function Code Initialization and Backup Settings

To restore the drive to factory settings, users can configure function code A0-03. Selecting different values can clear fault records, restore all parameters to factory defaults (with or without motor parameters), or backup the current parameters to function codes. Backup parameters can be achieved by setting function code A0-04 for quick restoration when needed.

II. Parameter Settings for Controlling Synchronous Motors

To control synchronous motors, users must correctly set a series of parameters. First, select the motor type as synchronous via function code d0-00. Then, configure the synchronous motor’s basic parameters such as rated power (d0-01), rated voltage (d0-02), and rated current (d0-03). Next, set the electrical parameters including stator resistance (d0-15), direct-axis inductance (d0-16), quadrature-axis inductance (d0-17), and back EMF constant (d0-18). Additionally, set the motor’s identification current (d0-19) and initial angle (d0-20). After completing the parameter settings, perform motor parameter identification (d0-22) to ensure accuracy.

GS100M External Wiring Diagram

III. Pulse Input + Direction Input Frequency Setting and External Terminal Startup Configuration

To use pulse input + direction input for frequency setting and external terminal startup, users need to correctly wire the terminals and configure the relevant parameters.

Wiring Instructions
  1. Pulse Input (PULS+ and PULS-): Connect the positive and negative terminals of the pulse signal to the drive’s PULS+ and PULS- terminals, respectively.
  2. Direction Input (SIGN+ and SIGN-): Connect the positive and negative terminals of the direction signal to the drive’s SIGN+ and SIGN- terminals, respectively.
  3. External Start Terminal: Depending on specific requirements, connect the external start signal to the corresponding multi-function input terminal, such as X1, X2, etc.
Parameter Settings
  1. Function Code C0-22: Set to 2 to select pulse train position control pulse input mode.
  2. Function Code b0-01: Set to 5 or 11 to choose the frequency setting method based on the pulse input channel.
  3. Function Code b1-00: Set to 1 to select terminal control mode, enabling startup via external terminals.
  4. Multi-function Terminal Settings: Use function codes C0-01 to C0-08 to configure the corresponding multi-function terminals for pulse input, direction input, and external startup functions.

IV. Fault Code Meaning Analysis and Resolution Methods

The GS100M drive provides detailed fault codes to help users quickly locate and resolve issues. Below are some common fault codes, their meanings, and resolution methods:

  1. oC1 (Acceleration Overcurrent): Excessive current during acceleration. Possible causes include excessive torque boost, high starting frequency, and short acceleration time. Resolution methods include reducing torque boost, lowering the starting frequency, and extending the acceleration time.
  2. oL2 (Motor Overload): Excessive motor load. Possible causes include heavy loads and improper motor parameter settings. Resolution methods include reducing the load and correctly setting parameters according to the motor nameplate.
  3. ov1 (Acceleration Overvoltage): High voltage during acceleration. Possible causes include abnormal input voltage and large load inertia. Resolution methods include checking the grid voltage and using dynamic braking.
  4. CtC (Current Detection Circuit Anomaly): Fault in the current detection circuit. Possible causes include abnormal control board and drive board connections and damaged current sensors. Resolution methods include checking and reinserting the cable and seeking service.

By carefully reading and understanding the user guide section of the GS100M manual, users can better master the drive’s operation, parameter settings, and fault handling methods, ensuring smooth and efficient drive operation.

Posted on Leave a comment

PIONEER VF5000 Series Inverter User Manual Guide

The PIONEER VF5000 series high-performance vector inverter is an advanced inverter featuring high torque, high precision, and a wide speed range. It is widely used in various mechanical equipment and speed control systems. This article will provide a detailed introduction to the inverter’s operation panel functions, parameter settings, external terminal wiring, and fault handling methods.

VF5000 operation panel

I. Operation Panel (Keyboard) Function Introduction and Parameter Settings

1.1 Operation Panel Functions

The PIONEER VF5000 series inverter is equipped with an intuitive and easy-to-use operation panel. The main button functions are as follows:

  • RUN Key: Used to start or stop the inverter.
  • STOP/RESET Key: Press this key to stop the inverter during normal operation, or to reset faults in the fault state.
  • PRG Key: Enters or exits the programming state for modifying function parameters.
  • JOG/REV Key (Not available on LC03): Used for jogging or reversing the motor.
  • ▲ (Increase) Key and ▼ (Decrease) Key: Used to modify parameter values in the programming state.
  • SET Key: Saves modified parameter values.
  • ► (Shift) Key: Selects the parameter bit to be modified in the programming state.
  • Analog Potentiometer: When F0.01 is set to 0, adjusting this potentiometer changes the output frequency.

1.2 Password Setting and Clearance

The PIONEER VF5000 series inverter provides a parameter write protection feature, which can be set via the F3.02 parameter to prevent unauthorized parameter modifications. Password setting and clearance must be performed in the programming state. Please refer to the parameter setting section in the user manual for specific methods.

1.3 Parameter Initialization

Parameter initialization restores the inverter to its factory settings. In the programming state, set the F3.01 parameter to 1 to restore factory defaults. Note that this operation will clear all user-defined parameters and should be used with caution.

1.4 Jogging Operation

Jogging operation allows the user to achieve short-term frequency conversion through the operation panel or external terminals. In the programming state, set the F0.04 parameter to operation panel control, set the F2.19 parameter for the jogging frequency, and then press the jogging key on the operation panel to enable jogging.

VF5000 physical image

1.5 Closed-Loop PID Control Wiring and Settings

To achieve closed-loop PID control, the feedback signal from the pressure sensor should be connected to the CCI terminal of the inverter, and the setpoint signal to the VCI terminal. Please refer to the wiring diagram in the user manual for specific wiring methods. In the programming state, set the F6.00 parameter to enable PID function, F6.01 and F6.02 parameters to select the setpoint and feedback channels respectively, and F6.06, F6.07, and F6.08 parameters to set the PID control’s proportional, integral, and derivative times.

II. External Terminal Wiring and Parameter Settings

2.1 Forward and Reverse Start

To achieve forward and reverse start via external terminals, connect the control terminals FWD and REV to the forward and reverse start signal sources respectively. In the programming state, set the F0.04 parameter to terminal operation command channel, and the F4.06 parameter to select the two-wire or three-wire control mode. Please refer to the wiring diagram in the user manual for specific wiring methods.

2.2 External Potentiometer Speed Control

For external potentiometer speed control, connect the sliding end of the potentiometer to the VCI terminal of the inverter, and the other two fixed ends to the +10V and GND terminals respectively. In the programming state, set the F0.01 parameter to VCI analog setpoint to change the output frequency by adjusting the external potentiometer.

VF5000 standard wiring diagram

III. Fault Code Meaning Analysis and Solutions

The PIONEER VF5000 series inverter features comprehensive fault protection. When a fault is detected, the inverter will stop outputting and display the corresponding fault code. Common fault codes, their meanings, and solutions are as follows:

  • E-01: Overcurrent during acceleration. Possible causes include too short an acceleration time, excessive load inertia, etc. Solutions include extending the acceleration time, reducing load inertia, etc.
  • E-02: Overcurrent during deceleration. Possible causes include too short a deceleration time, large inertial loads, etc. Solutions include extending the deceleration time, reducing load inertia, etc.
  • E-12: Inverter overload. Possible causes include excessive torque boost, excessive load, etc. Solutions include reducing the torque boost value, reducing the load, etc.

Please refer to the fault diagnosis and handling section in the user manual for detailed fault codes and countermeasures.

IV. Conclusion

The PIONEER VF5000 series high-performance vector inverter boasts powerful functions and easy operation. By reasonably setting the operation panel parameters and external terminal wiring, various complex control requirements can be achieved. Meanwhile, the comprehensive fault protection function also provides a strong guarantee for the stable operation of the equipment. It is hoped that this user guide can help users better understand and use the VF5000 series inverter.

Posted on Leave a comment

User Manual Guide for Rockwell PowerFlex 400 Series Variable Frequency Drive

I. Function Introduction and Parameter Setting of the Operation Panel (Numeric Keypad)

The PowerFlex 400 Series Variable Frequency Drive (VFD) is equipped with an intuitive operation panel. Users can easily complete parameter settings, monitor operating status, and perform fault diagnosis through the numeric keypad. The main keys on the operation panel include the Increment Key, Decrement Key, PRG Function/Data Toggle Key, STOP Key, SET/Data Confirmation Key, and MF.K/Multi-Function Key.

Powerflex 400 numeric keypad function diagram

Password Setting and Parameter Modification Restriction:

After entering the parameter editing mode, users can set a password to restrict parameter modifications by selecting a specific parameter (e.g., P042). Once the password is set, unauthorized users will be unable to change the protected parameters.

To eliminate the password, simply set the password parameter (P042) to 0 and save the changes.

Restoring Factory Default Parameters:

With the VFD in the stopped state, press the programming key to enter the menu, select the F0.13 function to restore parameters, change the current value to 2, and press the confirmation key to save. This will restore all parameters to their factory defaults, eliminating any user-defined settings.

II. External Terminal Control for Forward/Reverse Operation and Potentiometer Speed Adjustment Settings

Forward/Reverse Control:

The PowerFlex 400 Series VFD supports forward/reverse control of the motor through external terminals. The specific setting parameters are T051 to T054, which define the functions of the multi-function input terminals. For example, set T051 to 1 (forward operation) and T052 to 2 (reverse operation), and then connect the corresponding external switches or relays to the respective input terminals to achieve forward/reverse control of the motor.

Potentiometer Speed Adjustment:

Potentiometer speed adjustment is a common analog speed control method. First, configure the VFD’s analog input terminals (e.g., AI1 or AI2) to accept voltage or current signals from the potentiometer. This can be achieved by setting parameters T069 or T073 to select the corresponding input range and signal type (e.g., 0-10V voltage or 4-20mA current). When wiring, connect the sliding end of the potentiometer to the VFD’s analog input terminal and the fixed ends to the power supply and ground respectively.

Powerflex 400 External Terminal Control Diagram

III. Analysis of Fault Codes and Solutions

The PowerFlex 400 Series VFD features comprehensive fault diagnosis capabilities. When a fault occurs, the VFD displays the corresponding fault code. Below are some common fault codes, their meanings, and solutions:

  • F36: Output Overcurrent. Possible causes include motor overload, output short circuit, or improper parameter settings. Solutions include checking motor load, inspecting the output circuit, and adjusting relevant parameters (e.g., P033 motor overload current setting).
  • Drive-HIM: Drive Alarm. Typically caused by EEPROM checksum errors. Solutions include power cycling or replacing the HIM module.
  • F22: Drive Reset Fault. May occur during power-up or operation. The solution is to check the correctness of the wiring, especially the connections at the TB2 terminal.
  • F32: EEPROM Fault. May be due to corrupted EEPROM data or inability to program valid data. Solutions include checking the connection between the main control board and the power board, resetting to default parameters, and power cycling.

IV. Summary

The Rockwell PowerFlex 400 Series VFD, with its powerful functions, flexible configuration, and reliable performance, is widely used in the field of industrial automation. Through the introduction in this article, users can better understand and master the functions of the VFD’s operation panel, external terminal control settings, fault diagnosis, and solutions, thereby ensuring safe and efficient operation of the VFD. Whether for users who are new to VFDs or experienced engineers, this user manual provides valuable information and practical operating tips. In practical applications, it is recommended that users configure VFD parameters based on specific application scenarios and needs, and regularly inspect and maintain the VFD to extend its service life and improve production efficiency.

Posted on Leave a comment

EASYDRIVE Inverter M200 User Manual Operation Guide

I. Operation Panel Functions and Basic Settings

1. Operation Panel Function Introduction
M200 frequency converter displays normally

The EASYDRIVE M200 inverter’s operation panel features a straightforward design, incorporating keys such as RUN, M-FUNC (multifunctional), STOP/RESET, PRG (program switch), ENTER, ▲/▼ (data modification), and ▼▼ (data bit switch). The LED display can show set frequency, output voltage, output current, and other parameters.

2. Restoring Factory Defaults

To restore the EASYDRIVE M200 inverter to its factory settings, you can follow these steps via the operation panel:

  • Enter the parameter setting interface (PRG key).
  • Locate the F0-01 parameter (Parameter Initialization).
  • Set F0-01 to 1 and press ENTER to confirm.
  • The inverter will automatically restart and revert to factory settings.
3. Password Setting and Removal

To protect the inverter settings, a user password can be set. The specific operations are as follows:

  • Enter the parameter setting interface.
  • Locate the F0-00 parameter (User Password).
  • Set a non-zero digit as the password and press ENTER to confirm.
  • To remove the password, set F0-00 to 0000.
4. Torque Boost, Cutoff Frequency, and Slip Frequency Compensation Settings
  • Torque Boost Setting:
    • Enter the F1 parameter group and find F1-13 (Torque Boost).
    • Set the torque boost percentage (0.0% to 30.0%) according to the load condition.
  • Cutoff Frequency Setting:
    • Locate F1-14 (Torque Boost Cutoff Frequency).
    • Set the cutoff frequency percentage (0.0% to 50.0%).
  • Slip Frequency Compensation Setting:
    • Enter the F1 parameter group and find F1-15 (V/F Slip Frequency Compensation).
    • Set the slip frequency compensation percentage (0.0% to 200.0%).
E-15

II. Three-Wire Operation Control and External Potentiometer Settings

1. Three-Wire Operation Control

Three-wire operation control allows for forward, reverse, and stop control of the inverter through three terminals. The setup steps are as follows:

  • Enter the F6 parameter group and find F6-09 (FWD/REV Terminal Control Mode).
  • Set F6-09 to 2 or 3 to select the three-wire control mode.
  • When wiring, connect the forward control terminal (e.g., DI1), reverse control terminal (e.g., DI2), and stop control terminal (e.g., DI3) to the corresponding function terminals, respectively.
2. External Potentiometer for Forward/Reverse and Speed Adjustment

An external potentiometer can be used for frequency setting on the inverter, enabling forward/reverse control and speed adjustment. The specific settings are as follows:

  • Forward/Reverse Setting:
    • Enter the F1 parameter group and set F1-02 (Main Frequency Source A Selection) to AI1 or AI2.
    • When wiring, connect the center tap of the external potentiometer to the common terminal of the inverter (e.g., GND), and the other ends to AI1 or AI2 terminals, respectively.
    • Adjust the potentiometer resistance to achieve forward or reverse rotation.
  • Speed Adjustment Setting:
    • Enter the F5 parameter group to set the input range of AI1 or AI2 (F5-00 to F5-03 or F5-05 to F5-08).
    • Wiring is the same as above; adjusting the potentiometer resistance will change the output frequency.

III. Fault Diagnosis and Handling

1. E-015 Fault (External Device Fault)

When the inverter displays the E-015 fault code, it indicates that the external device fault input terminal is closed. The solution is as follows:

  • Check if the external device is functioning normally.
  • Disconnect the external device fault input terminal and clear the fault.
2. Other Common Faults and Solutions
  • E-01 Overcurrent During Acceleration:
    • Possible Causes: Too short acceleration time, excessive load inertia.
    • Solution: Extend the acceleration time, reduce the load inertia.
  • E-02 Overcurrent During Deceleration:
    • Possible Causes: Too short deceleration time, large inertial load.
    • Solution: Extend the deceleration time, reduce the load inertia.
  • E-07 Bus Undervoltage:
    • Possible Cause: Abnormal input voltage.
    • Solution: Check if the power supply voltage is normal.
  • E-16 RS485 Communication Fault:
    • Possible Causes: Improper baud rate setting, serial port communication error.
    • Solution: Set the baud rate appropriately, check the communication cable and ensure the upper computer is working normally.

IV. Conclusion

The EASYDRIVE Inverter M200 User Manual provides a comprehensive operation guide, covering operation panel function introduction, basic settings, terminal control, external potentiometer settings, fault diagnosis, and handling. By reasonably setting parameters and correctly wiring, users can easily achieve various functions of the inverter, ensuring stable equipment operation. Meanwhile, understanding common faults and solutions helps users quickly locate and troubleshoot issues, improving equipment efficiency and reliability.

Posted on Leave a comment

Analysis and Solutions for FAULT FB11 and FAULT FB14 in ABB’s ACS880 Series Frequency Converters

Introduction

In the field of industrial automation, ABB’s ACS880 series frequency converters are highly regarded for their high performance, reliability, and wide range of applications. However, like any equipment, they may encounter faults during operation. This article delves into the meanings, causes, and solutions of FAULT FB11 and FAULT FB14 in the ACS880 series through a specific maintenance case.

check connection

Specific Maintenance Case

A customer’s ABB ACS880 series frequency converter initially displayed the fault message “Drive is faulted, Please reset the fault first.” After pressing the reset button, the display changed to “Check Connection” fault. Upon inspection, it was found that the ZCU-12 mainboard had burned out. After replacing it with a new ZCU-12 mainboard, the operation panel showed the fault “Panel and Drive not Compatible.” After initializing the parameters, the “Fault FB11” appeared, indicating that the memory card was missing and the mainboard could not detect the ZMU-02 memory card.

Drive is faulted fault

Fault Analysis

  1. FAULT FB11FAULT FB11 signifies a software loading failure of the memory unit, typically caused by a missing or unrecognized memory card. In the ACS880 series, the memory card (such as ZMU-02) stores the converter’s parameters, programs, and data. If the memory card is missing, damaged, or the data is inconsistent, the converter cannot load the necessary operating programs and data properly, triggering the FAULT FB11 fault.
  2. FAULT FB14FAULT FB14 indicates the inability to load data from the memory card. This usually occurs when the memory card is damaged, the data is lost, or there is data inconsistency. Similar to FAULT FB11, FAULT FB14 is triggered by the converter’s failure to correctly read the data from the memory card.
panel and drive  not compatible fault

Solutions

  1. Check the Memory CardFirst, check if the ZMU-02 memory card is installed correctly and ensure its physical connection is good. A loose or poorly connected memory card may cause the converter to fail to recognize it.
  2. Re-initialize the Memory CardIf the memory card connection is normal but the problem persists, try using ABB’s specialized tools to re-initialize the memory card. This can usually restore the memory card to its factory settings and clear any data inconsistencies that may cause faults.
  3. Replace the Memory CardIf re-initializing the memory card does not solve the problem, it may be necessary to replace it with a new one. Various types of memory cards are available on the market, such as standard program N2000, textile program N5500, custom programming N8010, lifting program 7518, curling program N5000, lifting program N5050, etc. Choose the appropriate memory card for replacement based on the specific application and needs of the converter.
  4. Check the Mainboard and Connection CablesAfter replacing the memory card, also check if the mainboard and connection cables are normal. Ensure all connections are secure and reliable to avoid faults caused by poor connections.
  5. Contact Professional TechniciansIf the above methods cannot solve the problem, it is recommended to contact ABB’s professional technicians or authorized service centers for further inspection and repair.
fault FB11

Role of the Memory Card

In the ACS880 series frequency converters, the memory card plays a crucial role. It not only stores the converter’s parameters, programs, and data but also allows users to modify and update these data when needed. Furthermore, the memory card provides data backup and recovery functions, ensuring that the converter can quickly recover to its normal state in case of unexpected faults. Therefore, maintaining the good condition of the memory card and the integrity of the data is essential for the proper operation of the converter.

zmu-02

Conclusion

ZCU-12

Through this discussion, we have gained a deep understanding of the meanings, causes, and solutions of FAULT FB11 and FAULT FB14 in ABB’s ACS880 series frequency converters. In practical applications, when encountering such faults, one should first check the status and connection of the memory card and take corresponding solutions based on the specific situation. Regular maintenance and inspection of the converter and its related components are also important measures to prevent faults. We hope this article provides valuable reference and assistance for users in using and maintaining ACS880 series frequency converters.

Posted on Leave a comment

Does ABB’s ACS880 drive require ZMU-02 to be used?

The ABB ACS880 drive does not necessarily require the ZMU-02 storage card to operate. The ZMU-02 card is primarily used to provide additional storage space for saving specific configuration parameters, and it is often used in applications that require storing large amounts of programs or advanced functions (e.g., multi-drive networking, complex control strategies, etc.).

ZMU-02

Role of the ZMU-02 Storage Card:

  1. Storing Parameters and Programs: The ZMU-02 card can be used to store the drive’s parameter settings, control programs, or fault logs. In applications where frequent adjustments or multiple preset configurations are needed, the ZMU-02 card becomes useful.
  2. Program Upgrades and Backup: The ZMU-02 card can also serve as a tool for program upgrades or backing up data. If the drive needs firmware updates or parameter changes, the storage card can make the process more convenient.
ACS880 NZ2000

Is the ZMU-02 Card Required?

  1. Standard Models: For most standard applications or regular ACS880 drives, the ZMU-02 card is not required for basic operation. The drive itself can operate normally with manual parameter adjustments and control, without the need for additional storage.
  2. Specialized Models or Specific Requirements: If the ACS880 model is part of a more specialized application or requires more advanced functionality (e.g., storing large amounts of configuration data, multiple programs, or updates), the ZMU-02 card might be necessary. This is especially true in multi-drive setups or when managing configurations across multiple devices.
  3. Different Model Requirements: Some specific ACS880 models may indeed require the ZMU-02 card for operation, particularly in complex applications. It is best to consult the specific model’s documentation or application manual to determine whether the storage card is required.

Conclusion:

The ZMU-02 storage card is not mandatory for all ACS880 drives. Standard models typically do not require it, but in certain specialized or advanced applications, the card may be necessary. It’s advisable to check the specific model and application manual to confirm whether the storage card is needed.

Posted on Leave a comment

Schneider ATV310 Series Inverter User Manual Guide

I. Introduction to Operating Panel Functions and Password Settings

The Schneider ATV310 series of inverters come equipped with an intuitive operating panel that facilitates various settings and operations. The operating panel includes a display screen, multiple buttons, and indicator lights. The display screen shows current parameters and status, while the buttons are used for navigation and parameter setting.

ATV310 is not working when powered on

Password Setting and Unlocking

To ensure device security, the ATV310 inverter supports password locking. Users can restrict access to the inverter by setting a password.

  • Setting a Password: Enter the “Configuration Mode” (ConF), select the “999 HMI Password” parameter, enter the desired password (ranging from 2 to 9999) using the navigation keys, and press the confirm button to save.
  • Unlocking the Inverter: If the inverter is locked, enter the “Configuration Mode”, select the “999 HMI Password” parameter, enter the password, and press the confirm button to unlock. If the password is forgotten, contact Schneider Electric technical support.
ATV310 actual terminal wiring diagram

Accessing Full Menu Functions and Storing/Restoring Parameters

The ATV310 inverter offers a comprehensive range of parameter settings. Users can access the full menu via the “Configuration Mode” (ConF).

  • Accessing the Full Menu: In the “Configuration Mode”, use the navigation keys to select the “FULL” submenu to access the complete list of parameters.
  • Storing Parameters: After completing parameter settings, select “101 Store Customer Parameter Settings” and press the confirm button to save the current configuration.
  • Restoring Factory Defaults: To reset the inverter to its factory default settings, select “102 Factory/Restore Customer Parameter Settings” and then press the confirm button and select “64”.
ATV310 displays normally

II. Setting the External Terminal Operating Mode

The ATV310 inverter supports the external terminal control mode, allowing users to achieve forward, reverse, high-speed, and low-speed functions through the LI1, LI2, LI3, and LI4 logic input terminals.

Wiring and Parameter Settings

  1. Wiring:
    • Connect the LI1, LI2, LI3, and LI4 terminals to the corresponding outputs of the external controller.
    • Ensure all wiring is secure and compliant with safety regulations.
  2. Parameter Settings:
    • Enter the “Configuration Mode” (ConF) and select the “Control Menu” (400-).
    • Set the “Control Type” (201) to “3-Wire Control” (01).
    • Set the “Logic Input Type” (203) to “Positive Logic” (00) to ensure high-level activation.
    • Set the “Given Channel 1” (401) to “Remote Display” (01) to receive speed commands via the external controller.
    • Set the “Command Channel 1” (407) to “Terminal” (01) to receive control commands through the LI1-LI4 terminals.
    • In the “Input/Output Menu” (200-), assign functions to LI1, LI2, LI3, and LI4:
      • LI1: Forward (L1H)
      • LI2: Reverse (L2H)
      • LI3: High Speed (L3H)
      • LI4: Low Speed (L4H)
    • In the “Speed Limit Menu” (512-), set the specific frequency values for high speed (512.2) and low speed (512.0).

High and Low Speed Frequency Given

The high and low speed frequencies can be given via the analog or digital outputs of the external controller. If using an analog output, connect the AI1 terminal to the analog output of the external controller and set the AI1 type and range in the “Input/Output Menu” (200-). If using a digital output, directly control high and low speeds through the LI3 and LI4 terminals.

III. Fault Code Analysis and Troubleshooting

The ATV310 inverter features advanced fault diagnosis. When a fault occurs, the corresponding fault code will be displayed on the screen. Users can take appropriate measures based on the code.

Common Fault Codes and Solutions

  • F001 Precharge Fault: Possible causes include faulty charging relays or damaged charging resistors. The solution is to check connections, confirm the stability of the main power supply, and contact Schneider Electric technical support if necessary.
  • F010 Overcurrent Fault: May be caused by incorrect parameter settings, excessive load, or mechanical lockup. The solution is to check parameter settings, adjust motor/drive/load dimensions, inspect mechanical device status, and connect motor reactors.
  • F011 Inverter Overheat Fault: May be caused by excessive load, poor ventilation, or high ambient temperature. The solution is to check motor load, inverter ventilation, and ambient temperature, and wait for the inverter to cool down before restarting.
  • F013 Motor Overload Fault: Triggered by excessive motor current. The solution is to check motor thermal protection settings and motor load, and adjust parameters if necessary.
  • F014/F015 Output Phase Loss Fault: May be caused by poor motor connections or faulty output contactors. The solution is to check motor connections and output contactor status.

IV. Conclusion

The Schneider ATV310 series inverter user manual provides detailed operating instructions and parameter setting explanations, helping users quickly get started and fully utilize the inverter’s functions. Through this guide, users can understand the operating panel functions, password setting and unlocking methods, steps for setting the external terminal operating mode, and solutions for common fault codes, thereby more effectively using and maintaining the ATV310 inverter. In practical applications, users should set parameters reasonably according to specific needs and environmental conditions, and regularly check the device status to ensure long-term stable operation of the inverter.

Posted on Leave a comment

Fuji Frequency Converter FRENIC-Multi (FRN E1S) Series User Manual Guide

I. Introduction to the Operation Panel Functionality and Key Parameter Settings

1.1 Introduction to the Operation Panel Functionality

Fuji frequency converter E1S series operation panel function diagram

The Fuji Frequency Converter FRENIC-Multi (FRN E1S) series features an intuitive operation panel that allows users to easily monitor and control the operation of the frequency converter. The operation panel provides various functions such as setting operating frequencies, monitoring operating status, and configuring parameters.

Key Features of the Operation Panel:

  • LED Display: Displays various operating parameters such as output frequency, output current, and operating status.
  • UP/DOWN Keys: Used to adjust the set frequency.
  • RUN/STOP Keys: Used to start and stop the motor.
  • Mode Selection Keys: Allows switching between operation modes such as run mode, program mode, and alarm mode.

1.2 Setting the Electronic Thermal Relay Function

The electronic thermal relay function protects the motor from overheating by monitoring the output current of the frequency converter. To configure this function, the following parameters need to be set:

  • F10 (Thermal Relay Characteristic Selection): Selects the cooling system characteristic of the motor. Options include self-cooled motors with built-in fans and externally cooled motors.
  • F11 (Thermal Relay Action Value): Sets the current level at which the thermal relay will trip. This value should typically be set to around 100-110% of the motor’s rated current.
  • F12 (Thermal Time Constant): Sets the time it takes for the thermal relay to trip after the current exceeds the action value. This value depends on the motor’s thermal properties and the ambient operating conditions.

1.3 Configuring the Instantaneous Power Failure Restart Function

The instantaneous power failure restart function allows the frequency converter to automatically restart the motor after a temporary power outage. To enable and configure this function, the following parameters need to be set:

  • F14 (Instantaneous Power Failure Restart Selection): Enables or disables the instantaneous power failure restart function. Options include no restart (instant trip), no restart with reset on power restoration, restart at the frequency at the time of power failure (for general loads), and restart at the start frequency (for low-inertia loads).
  • H13 (Restart Waiting Time): Sets the time to wait after detecting a power failure before attempting to restart the motor. This helps to ensure that the residual voltage in the motor windings has decayed sufficiently to prevent inrush currents.
  • H14 (Frequency Ramp-Down Rate): Sets the rate at which the output frequency is reduced during restart to synchronize with the motor’s rotational speed and prevent excessive currents.
  • H16 (Instantaneous Power Failure Allowable Time): Sets the maximum time that can elapse after a power failure before the restart function is disabled.
Fuji frequency converter E1S standard wiring diagram

1.4 Selecting and Configuring the Terminal FM Function

The terminal FM provides an analog output signal that can be used to monitor various operating parameters of the frequency converter. To select and configure this function, the following steps are required:

  • F29 (Terminal FM Action Selection): Selects whether the terminal FM outputs a voltage signal (0-10V) or a pulse signal.
  • F30 (Output Gain): Adjusts the gain of the analog output signal. This allows scaling the output signal to match the input range of the monitoring equipment.
  • F31 (Function Selection): Selects the parameter to be monitored and output through the terminal FM. Options include output frequency, output current, output voltage, motor torque, load rate, and more.
  • F33 (Pulse Rate): When pulse output is selected, this parameter sets the pulse rate at 100% output.

By carefully configuring these parameters, users can fully utilize the advanced functionality of the Fuji FRENIC-Multi (FRN E1S) series frequency converter to optimize motor control and protect against potential faults.

Posted on Leave a comment

Panasonic Inverter VF200 Series User Manual Guide

Introduction

The Panasonic Inverter VF200 series is a powerful and flexible variable frequency drive (VFD) equipment widely used in the industrial automation field. This document aims to provide users with a detailed user guide to help them better understand and efficiently operate the VF200 series inverter.


Function diagram of Panasonic VF200 series inverter operation panel

1. Operation Panel Function Introduction, Parameter Upload, and Download

1.1 Operation Panel Function Introduction

The operation panel of the Panasonic Inverter VF200 series serves as the primary interface for user interaction. It features various functions and indicators to facilitate ease of use and monitoring.

  • Display Section: Displays output frequency, current, linear speed, set frequency, communication station number, abnormality content, various mode displays, and function setting data.
  • FWD/REV Indicators: Green indicators that show the forward/reverse operation status.
  • Panel Potentiometer: Used to set the operating frequency via the operation panel.
  • Alarm (ALM) Indicator: Red indicator that lights up in case of abnormalities or alarms.
  • RUN/STOP Buttons: Buttons to start/stop the inverter.
  • MODE Button: Toggles between various modes such as operation status display, frequency setting, rotation direction setting, control status monitoring, custom settings, function settings, and built-in memory settings.
  • SET Button: Used to switch modes, display data, and store settings.
  • ▲(UP) and ▼(DOWN) Buttons: Used to change data, output frequency, and set the rotation direction when operating via the panel.
VF200 picture

1.2 Uploading and Downloading Parameters

  • Uploading Parameters (CPY1): To upload the inverter’s functional parameters to the operation panel’s built-in memory, follow these steps:
    1. Stop the inverter.
    2. Press the MODE button four times to enter the function setting mode.
    3. Press the SET button.
    4. Use the ▲/▼ buttons to select “CPY1”.
    5. Press the SET button and set the value to “UPL”.
    6. Press the SET button again to start the upload process.
  • Downloading Parameters (CPY2): To download the parameters from the operation panel’s built-in memory to the inverter, follow these steps:
    1. Stop the inverter.
    2. Press the MODE button four times to enter the function setting mode.
    3. Press the SET button.
    4. Use the ▲/▼ buttons to select “CPY2”.
    5. Press the SET button and set the value to “dOL”.
    6. Press the SET button again to start the download process.

1.3 Setting and Eliminating Passwords

  • Setting a Password:
    1. Stop the inverter.
    2. Press the MODE button four times to enter the function setting mode.
    3. Use the ▲/▼ buttons to navigate to parameter P150.
    4. Press the SET button to display the current password.
    5. Use the ▲/▼ buttons to set a new password (range: 0000-9999).
    6. Press the SET button to save the password.
  • Eliminating a Password:
    1. Stop the inverter.
    2. Press the MODE button four times to enter the function setting mode.
    3. Use the ▲/▼ buttons to navigate to parameter P150.
    4. Press the SET button to display the current password.
    5. Set the password to “0000” using the ▲/▼ buttons.
    6. Press the SET button to eliminate the password.

1.4 Restoring Parameter Initialization

To restore the inverter’s parameters to their factory default settings, follow these steps:

  1. Stop the inverter.
  2. Press the MODE button four times to enter the function setting mode.
  3. Use the ▲/▼ buttons to navigate to parameter P151.
  4. Press the SET button to display the current setting.
  5. Set the value to “3” using the ▲/▼ buttons.
  6. Press the SET button to restore the parameters to their factory defaults.
Panasonic VF200 inverter control terminal wiring diagram

2. External Terminal Control for Forward/Reverse Rotation and PWM Frequency Control

2.1 Forward/Reverse Rotation Control via External Terminals

To achieve forward/reverse rotation control via external terminals, connect the relevant control signals to the designated terminals on the inverter.

  • Terminal Configuration:
    • SW1-SW5 (Control Circuit Terminals 4-8): These terminals can be configured to control forward/reverse rotation, start/stop, and other functions.
    • Configuration Steps:
      1. Stop the inverter.
      2. Enter the function setting mode by pressing the MODE button four times.
      3. Navigate to parameters P036-P040 using the ▲/▼ buttons.
      4. Set the desired function (e.g., forward/reverse, start/stop) to the corresponding terminal using the ▲/▼ buttons.
      5. Press the SET button to save the settings.

2.2 PWM (Pulse) Frequency Control

To control the inverter’s output frequency via PWM signals, follow these steps:

  • Terminal Configuration:
    • Terminal 7 (SW4) and Terminal 8: These terminals are used to receive PWM frequency control signals.
    • Configuration Steps:
      1. Stop the inverter.
      2. Enter the function setting mode by pressing the MODE button four times.
      3. Navigate to parameter P087 using the ▲/▼ buttons.
      4. Set the value to “1” to enable PWM frequency control.
      5. Press the SET button to save the setting.
      6. Connect the PWM signal source to terminals 7 and 8 according to the wiring diagram provided in the manual.
  • Additional Settings:
    • P088: Sets the number of PWM cycles to average for frequency calculation.
    • P089: Sets the PWM signal period.

By following this guide, users can effectively utilize the Panasonic Inverter VF200 series, leveraging its advanced features and flexible control options to meet various industrial automation needs.

Posted on Leave a comment

User Manual and Operation Guide for EACON EC5000 Series Frequency Converter

I. Introduction to Operation Panel Functions, Factory Reset, and Password Settings/Removal

The operation panel of the EACON EC5000 series frequency converter from Yikong integrates numerous functions, enabling users to easily configure and monitor the converter. The operation panel mainly comprises an LED display, a potentiometer, and various functional buttons. The LED display clearly shows the current operating status, set parameters, and alarm information, allowing users to monitor and adjust in real-time.

EC5000 physical image

Factory Reset:

  1. Preparation for Parameter Setting: Set the parameters in front of the frequency converter and switch the control mode to the factory reset state.
  2. Select Factory Reset: The display panel on the operation panel will show FXX. Use the up and down buttons to select 1 or 2 and press Enter. The screen will then display F00; press Enter again, and the screen will show F01.
  3. Confirm Reset: In the F01 state, press Enter. The screen will show F00, which is the final step of the factory reset.
  4. Complete Reset: After completing the above steps, press and hold the up and down buttons simultaneously to complete the factory reset.
  5. Reconfigure Parameters: After the factory reset, reconfigure the parameters according to actual requirements and save them.
EC5000 Terminal Block Function Diagram

Password Setting and Removal:

To ensure user and device security, the EACON EC5000 series provides a password setting function.

Password Setting:

  1. Access User Management Interface: On the home page, click the “User Management” menu and enter the initial account password “admin” to access.
  2. Modify Password: Click the “Modify Password” button, enter the original account password “admin”, then enter a new account password and confirm it, and click “Modify”.

Password Removal:

If the user forgets the password, they can reset the device to its factory settings using the reset button on the device. After the factory reset, the password will revert to “admin”. To prevent password theft, it is recommended to regularly change the password and set a relatively complex one.

II. Wiring and Parameter Setting for External Terminal Reversal and External Potentiometer Speed Regulation

EACON Inverter EC5000 Series Standard Wiring Diagram

External Terminal Reversal:

The EACON EC5000 series supports forward and reverse control via external terminals. Specific wiring and parameter settings are as follows:

  1. Wiring:
    • For reverse operation, connect S3, S2, S1, and SC. When the forward/reverse switch stop command (open) is activated, the frequency converter will stop operating.
    • For forward operation, connect the corresponding external switches and terminals as required.
  2. Parameter Setting:
    • No special settings are required; just ensure correct wiring of the external terminals.

External Potentiometer Speed Regulation:

Users can conveniently adjust the output frequency of the frequency converter using an external potentiometer, thereby achieving precise control of motor speed.

  1. Wiring:
    • Connect the output terminal of the external potentiometer to the analog input terminal of the frequency converter (such as the 0-10V or 4-20mA input terminal).
  2. Parameter Setting:
    • Enter the parameter setting interface of the frequency converter and select the corresponding analog input channel (such as FV or FI).
    • Set the corresponding parameters (such as B14 and B15) according to the type of external potentiometer (voltage or current).

III. Fault Code Analysis and Solutions

The EACON EC5000 series features comprehensive fault detection and diagnostic functions, displaying fault codes in real-time to help users quickly locate and resolve faults.

Common Fault Codes and Solutions:

  1. ERR: Indicates a control circuit fault. Possible causes include failure to establish transmission between the digital operator and the drive. Solutions include reinserting the digital operator and connectors, checking the wiring of the control circuit, or replacing the control plug-in board.
  2. Overvoltage, Overcurrent, Overload, etc.: These faults are usually related to the motor’s operating status or external load. Solutions include checking the motor’s operating status, load conditions, and ensuring the frequency converter’s output current and voltage are within specified ranges.
  3. Input/Output Phase Loss Fault: May be caused by poor power or motor wiring. Solutions include checking the power and motor wiring for firmness and reliability.
  4. Overheat Fault: May be caused by overheating of the frequency converter or motor. Solutions include checking if the cooling fan is operating normally, if the ambient temperature is too high, and if additional cooling measures are needed.

By following this guide, users can more effectively utilize the EACON EC5000 series frequency converter, achieving precise motor control and efficient operation. Prompt fault troubleshooting and resolution will improve equipment reliability and stability, extending its service life.