Posted on Leave a comment

User Manual Guide for Yuqiang Inverter YQ3000-G11 Series

I. Introduction to Operation Panel Functions

The Yuqiang Inverter YQ3000-G11 series operation panel integrates multiple functions, facilitating parameter setting and status monitoring for users. The panel mainly includes the following parts:

Function diagram of Yuqiang INVERTER operation panel
  • Status Indicators: Including RUN/TUNE (running status), FWD/REV (forward/reverse indication), LOCAL/REMOT (local/remote operation indication), and TRIP (fault indication). These indicators visually display the current status of the inverter.
  • Unit Indicators: Used to indicate the currently displayed unit, such as Hz (frequency), RPM (rotational speed), A (current), etc.
  • Digital Display Area: A 5-digit LED display area used to display set frequency, output frequency, alarm codes, and other information.
  • Analog Potentiometer: Equivalent to Al1, used to adjust the frequency.
  • Button Area: Including PRG/ESC (program/exit), DATA/ENT (confirm), UP (increment), DOWN (decrement), SHIFT (right shift), RUN (run), STOP/RST (stop/reset), and QUICK/JOG (quick multifunction) buttons for parameter setting and function operation.

Setting and Eliminating Passwords

  1. Setting a Password:
    • Enter the function code editing state, locate the P07.00 parameter, and set a non-zero value as the user password.
    • After exiting the function code editing state, the password protection will take effect.
  2. Eliminating a Password:
    • Re-enter the function code editing state and set the P07.00 parameter to 0.
    • After exiting the function code editing state, the password protection will be canceled.

Restoring Default Parameters

  • Enter the function code editing state, locate the P00.18 parameter, and set it to 1.
  • The inverter will automatically restore the default parameter settings and clear the user password.
Wiring diagram of control circuit for Yuqiang INVERTER

II. Terminal Start/Stop Mode and External Potentiometer Speed Adjustment Mode Settings

Wiring Instructions

  • Terminal Start/Stop Mode:
    • Connect external control signals to the multifunction input terminals of the inverter, such as FWD (forward), REV (reverse), and RUN/STOP terminals.
    • Specific wiring should be done according to control requirements, referring to the wiring diagram.
  • External Potentiometer Speed Adjustment Mode:
    • Connect the output signal of the external potentiometer to the analog input terminals of the inverter, such as Al1 or Al2.
    • Adjust the output range of the potentiometer to match the input requirements of the inverter.

Parameter Settings

  1. Terminal Start/Stop Mode:
    • Set the P00.01 parameter to 1 to select the terminal operation command channel.
    • Set the functions of S1~S8 multifunction terminals as needed, such as setting S1 as forward operation (FWD) and S2 as reverse operation (REV).
  2. External Potentiometer Speed Adjustment Mode:
    • Set the P00.06 or P00.07 parameter to the corresponding analog input channel, such as selecting Al1 as the frequency setting source.
    • Adjust the analog input parameters of the inverter according to the output range of the external potentiometer, such as the lower limit (P05.32) and upper limit (P05.34) of Al1.

III. Alarm Codes and Handling Methods

The Yuqiang Inverter YQ3000-G11 series provides abundant alarm codes to help users quickly locate fault causes. The following are some common alarm codes, their meanings, and handling methods:

  • OC1 (Acceleration Overcurrent): Overcurrent occurs during the acceleration of the inverter.
    • Handling Method: Check if the motor load is too large or appropriately extend the acceleration time.
  • OC2 (Deceleration Overcurrent): Overcurrent occurs during the deceleration of the inverter.
    • Handling Method: Check if the motor load is too large or appropriately extend the deceleration time.
  • OV1 (Acceleration Overvoltage): Overvoltage occurs during the acceleration of the inverter.
    • Handling Method: Check if the power supply voltage is too high or appropriately extend the acceleration time.
  • UV (DC Bus Undervoltage Fault): The DC bus voltage of the inverter is lower than the undervoltage protection setting value.
    • Handling Method: Check if the power supply voltage is normal or if the power supply lines are poorly connected.
  • OL1 (Motor Overload): The operating current of the motor exceeds the overload protection setting value.
    • Handling Method: Check if the motor load is too large or appropriately adjust the overload protection setting value.
  • OL2 (Inverter Overload): The output current of the inverter exceeds the overload protection setting value.
    • Handling Method: Check if the load is too large or if the inverter cooling is adequate.
  • tE (Motor Self-learning Fault): A fault occurs during the motor self-learning process.
    • Handling Method: Check if the motor connection is correct or re-perform motor self-learning.
  • PIDE (PID Feedback Disconnection Fault): The PID feedback signal is lost.
    • Handling Method: Check if the PID feedback line is properly connected or if the feedback sensor is normal.

When the inverter malfunctions, users should quickly locate the fault cause based on the alarm code and troubleshoot and repair it according to the corresponding handling method. At the same time, users should regularly maintain and inspect the inverter to ensure its normal operation.

Through this guide, we hope users can better understand and use the user manual for the Yuqiang Inverter YQ3000-G11 series, achieving efficient and safe inverter operation and maintenance.

Posted on Leave a comment

HARS VFD HS710 Series User Manual Usage Guide

I. Introduction to VFD Operation Panel Functions

The HARS VFD HS710 series features a comprehensive and user-friendly operation panel. The panel primarily includes the following keys and indicators:

  • PRG Programming Key: Used to enter or exit the menu for parameter modifications.
  • ENTER Confirmation Key: Confirms parameter settings or enters the menu.
  • ▲ Increment Key and ▼ Decrement Key: Used to increment or decrement data or function codes.
  • Shift Key: Selects the parameter modification bit and display content.
  • RUN Operation Key: Starts the VFD in keyboard operation mode.
  • STOP/RESET Stop/Reset Key: Stops VFD operation or resets faults.
  • FUNC Multi-function Quick Key: Switches functions according to needs.
HS710 Haishang Inverter Operation Panel Function Diagram

Setting Passwords and Restoring Factory Defaults

  1. Setting Passwords:
    • Enter the parameter setting interface (press the PRG key).
    • Use the increment and decrement keys to select FE.29 (User Password) and press the ENTER key to enter.
    • Use the numeric keys to enter the password value (0–65535) and press the ENTER key to confirm. The password setting will take effect after a 3-minute delay.
  2. Restoring Factory Defaults:
    • Enter the parameter setting interface.
    • Select F7.12 (Parameter Initialization) and press the ENTER key to enter.
    • Use the increment key to select “2: Restore all user parameters to factory settings” and press the ENTER key to confirm. After the operation is complete, the parameters will automatically be restored to their factory default values, and F7.12 will automatically reset to 0.

II. Terminal Start/Stop and External Potentiometer Speed Regulation Wiring

Wiring Steps

  1. Power Wiring:
    • Connect the three-phase power supply to the R, S, T terminals of the VFD, ensuring the power supply matches the VFD.
    • Install an air circuit breaker (NPB) between the power supply and input terminals to protect the circuit.
  2. Motor Wiring:
    • Connect the U, V, W terminals of the motor to the corresponding U, V, W terminals of the VFD.
    • Ensure the motor is properly grounded by connecting the E terminal of the VFD to the motor housing.
  3. Start/Stop Wiring:
    • Connect the positive power supply (+24V) of the control circuit to the +24V terminal of the VFD.
    • Connect one end of the external start button to the +24V terminal and the other end to the X1 terminal (Forward Operation).
    • Connect one end of the external stop button to the COM terminal and the other end to the X1 terminal (Forward Operation) or another stop function terminal as configured.
  4. External Potentiometer Speed Regulation Wiring:
    • Connect the center tap of the external potentiometer to the GND terminal of the VFD.
    • Connect one end of the potentiometer to the +10V terminal.
    • Connect the other end of the potentiometer to the AI1 terminal (Analog Input 1) to receive the speed control signal.

Parameter Settings

  1. Operation Command Channel Selection:
    • Enter the parameter setting interface.
    • Select F0.02 (Operation Command Channel Selection) and set it to “1: Terminal Operation Command Channel”.
  2. Analog Input Settings:
    • Select F4.13 (AI1 Input Lower Limit) and F4.15 (AI1 Input Upper Limit) and set appropriate values according to the output range of the potentiometer.
    • Select F4.14 (AI1 Lower Limit Corresponding Physical Quantity Setting) and F4.16 (AI1 Upper Limit Corresponding Physical Quantity Setting) and set them to “Speed Command” so that the potentiometer can control the output frequency.
  3. Frequency Source Selection:
    • Select F0.03 (Main Frequency Source A Selection) and set it to “2: AI1 Analog Given”.
Wiring Diagram for HS710 Haishang Inverter

III. Fault Code Analysis and Troubleshooting

The HARS VFD HS710 series may display various fault codes during operation. Below is an analysis and troubleshooting guide for some common fault codes:

  1. E-01: Overcurrent During Acceleration
    • Possible Causes: Too short acceleration time, overloaded load, improperly set V/F curve.
    • Solutions: Extend the acceleration time, check for abnormal loads, adjust the V/F curve.
  2. E-02: Overcurrent During Deceleration
    • Possible Causes: Too short deceleration time, excessive load inertia.
    • Solutions: Extend the deceleration time, connect an external braking resistor or braking unit.
  3. E-08: Motor Overload
    • Possible Causes: Improperly set V/F curve or torque boost, low grid voltage, overloaded load.
    • Solutions: Adjust the V/F curve and torque boost, check the grid voltage, reduce the load, or select a VFD with a higher power rating.
  4. E-12: Input Phase Loss
    • Possible Cause: Missing phase in the power input.
    • Solution: Check the power supply and wiring to ensure a normal three-phase power supply.
  5. E-13: Output Phase Loss or Current Imbalance
    • Possible Cause: Missing phase in output U, V, W.
    • Solution: Check the output wiring to ensure correct motor connections.

By carefully reading the user manual and following the above guide, users can effectively operate and maintain the HARS VFD HS710 series, ensuring the normal operation of the equipment and extending its service life.

Posted on Leave a comment

Operation Guide for MICOVERT 2003 Series Inverter User Manual from Michael

  1. Operation Methods for Basic Menus
    The operation of the MICOVERT 2003 series inverter from Michael is primarily completed through the Handheld Programmer HPG60. The HPG60 is equipped with an LCD display capable of showing 4 lines of text, 6 buttons, and a red LED indicator. Below are the operation methods for the basic menus:
Michael INVERTER MICOVERT 2003 series operation panel

1.1 Entering Menus
Selecting Main Menu: Use the “LEFT” or “RIGHT” buttons to choose from 8 main menus, such as “Speed”, “Speed Curve”, “Start/Stop”, etc.
Entering Submenu: Press the “DOWN” button to enter the submenu of the selected main menu.
Selecting Parameters: In the submenu, use the “DOWN” or “UP” buttons to scroll through and select parameters.

1.2 Setting Parameters
Changing Parameter Values: Use the red “UP” or “DOWN” buttons to select new parameter values.
Saving or Exiting: If the parameter change is correct, press the “ENTER” key to save the new value; if you need to discard the change, press the “ESC” key to exit.

1.3 Start/Stop Menu Settings
The Start/Stop menu is used to set parameters related to the start and stop of the inverter, such as start delay and braking ramp.

Start Delay: Adjusts the time for the motor to start with the brake on to avoid abnormalities caused by delays in contactor and control system actions. The setting range is 0-1000ms.
Braking Ramp: Adjusts the deceleration ramp from V0 speed to zero speed to improve stopping accuracy and reduce vibration. The setting range is 0.01-1.00 m/s².

1.4 Speed Menu Settings
The speed menu is used to set various operating speeds of the inverter, including re-leveling speed, inspection speed, creep speed, medium speed, and high speed.

Re-leveling Speed (Vn): The setting range is 0.5-100 r.p.m., used for re-leveling due to position changes caused by wire rope elongation after elevator unloading.
Inspection Speed (Vi): The setting range is 10-1500 r.p.m., used for inspection operation on the car roof.
Creep Speed (V0): The setting range is 1-100 r.p.m., used for deceleration before elevator stopping.
Medium Speed (V1), High Speed (V2/V3): The setting range is 10-3000 r.p.m., used for elevator operation at different speed segments.

Terminal diagram of the Michael INVERTER MICOVERT 2003 series
  1. Input and Output of Control Signals
    2.1 Input of Control Signals
    The input of control signals is mainly achieved through various signal terminals on the inverter. Below are the functions and setting methods of some key signal terminals:

Direction Signals: Include “UP” (up direction) and “DOWN” (down direction) signal terminals. When starting the inverter, direction commands and operation commands need to be given simultaneously.
Inspection Speed Signal (Vinsp): Used to set the inspection speed. When operating at inspection speed, the operation command and direction command need to be withdrawn simultaneously.
Speed Signals (V0, V1, V2, V3): Used to set creep speed, medium speed, and high speed respectively.

2.2 Output of Control Signals
The inverter is equipped with multiple output relays for controlling different functions of the elevator. Below are the functions of some key output relays:

Ready Relay: Engages after the inverter completes its self-check, used for elevator control warning.
Brake Relay: Engages 0.5 seconds after the direction command and speed command are given, causing the mechanical brake contactor to engage.
Operation Relay: Engages when the direction command and speed command are given, and releases 0.5 seconds after the motor reaches zero speed.

  1. Multi-Speed Operation
    The MICOVERT 2003 inverter supports multi-speed operation. By setting different speed parameters (V0, V1, V2, V3), smooth acceleration and deceleration of the elevator at different stages can be achieved. For example, use lower speeds (V0 or V1) during the elevator start-up phase, higher speeds (V2 or V3) during the stable operation phase, and decelerate to creep speed (V0) again during the stopping phase.
  2. Encoder Interface and Settings
    The MICOVERT 2003 inverter supports various encoder interfaces, including HTL level encoder, TTL level encoder, Resolver interface, absolute encoder, etc. Below are the basic steps for encoder wiring and settings:

4.1 HTL Level Encoder
Wiring: Connect the A phase, B phase, +15VDC, 0VDC, and shield wire of the encoder to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “HTL” and enter the number of pulses per revolution.

4.2 TTL Level Encoder
Wiring: Connect the A phase, B phase, +5VDC, 0VDC, and shield wire of the encoder to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “TTL” and enter the number of pulses per revolution.

4.3 Resolver Interface
Wiring: Use the dedicated conversion board RES01 to connect the output signals (SINUS and COSINUS) of the Resolver to the conversion board, and then connect the conversion board to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as “Resolver” and enter the relevant parameters.

4.4 Absolute Encoder
Wiring: Use the dedicated absolute conversion board ABS01 to connect the output signals of the absolute encoder to the conversion board, and then connect the conversion board to the corresponding terminals of the inverter.
Setting: In the drive menu, select the encoder type as the corresponding absolute encoder type (e.g., SSI, ENDAT), and enter the relevant parameters.

Wiring diagram for the MICOVERT 2003 series inverter by Michael
  1. Fault Code Identification and Solutions
    When the inverter malfunctions, the LCD display will show the corresponding error code. Users need to take appropriate solutions based on the error code. Below are some common fault codes and their handling methods:

Error 1 (IPM Overcurrent): Check if the motor parameters are correct or if the IPM module is damaged.
Errors 2-4 (U/V/W Phase Overcurrent): Similarly, check the motor parameters or IPM module.
Error 5 (Heat Sink Overtemperature): Check if the cooling system is working normally or reduce the load.
Error 6 (Intermediate Circuit Voltage Too High): Check if the braking resistor is connected normally or damaged.
Error 7 (Intermediate Circuit Voltage Too Low): Check if the main power supply voltage is too low.
Errors 8-9 (Operation Contactor Not Engaged or Main Power Supply Missing a Phase): Check if the contactor or main power supply connection is normal.
Errors 10-16: Involve issues such as missing direction commands, conflicting direction commands, no pulse signal from the encoder, etc. Check the relevant signals and wiring according to the specific situation.

By carefully reading and following the above instructions, users can better operate and maintain the MICOVERT 2003 series inverter from Micor, ensuring its stable operation and efficient performance.

Posted on Leave a comment

Operation Guide for Hpmont HD20 Series Inverter User Manual

I. Introduction to Inverter Operation Panel Functions
1.1 Function of Operation Panel Buttons
The operation panel of the Hpmont HD20 series inverter is equipped with multiple buttons and indicators for controlling the inverter and displaying its status. The main button functions are as follows:

Function Description Diagram of HPMONT VFD HD20 Operation Panel

****: Enter or exit programming mode.
****: When controlled via the operation panel, jog start the inverter.
****: When controlled via the operation panel, start the inverter.
****: When controlled via the operation panel, stop the inverter or perform fault reset.
****: Increment the functional parameter or parameter setting value.
****: Decrement the functional parameter or parameter setting value.
****: Select the modification digit of the set data or cyclically switch the display state parameters between stop/run.
****: Enter the submenu or confirm and save the settings.

1.2 Password Function Setting and Unlocking
To prevent unauthorized modifications, the inverter has a user password protection function. The following are the steps for setting, unlocking, and modifying the password:

Password Setting
Press ** to enter programming mode.
Use and to select parameter F01.00.
Press ** to enter password setting mode, and use and to input the desired password value (00000-65535).
After inputting, press ** to confirm and save, then exit programming mode.

Password Unlocking
If prompted to enter a password during operation panel use, press ** to enter password entry mode.
Use and to input the previously set password.
After inputting, press ** to confirm. If the password is correct, unlocking is successful, and operation can continue.

Password Modification
Press ** to enter programming mode.
Use and to select parameter F01.00.
Press ** to enter password modification mode, and use and to input the new password value.
After inputting, press ** to confirm and save, then exit programming mode.

II. Terminal Start/Stop and External Potentiometer Speed Adjustment Methods
2.1 Terminal Start/Stop Wiring and Parameter Setting
Wiring Method
Forward control terminal (DI1): Connect the forward start signal.
Reverse control terminal (DI2): Connect the reverse start signal.
Common terminal (COM): Connect to the other end of DI1 and DI2.

Parameter Setting
Enter programming mode, set parameter F15.00 to 2 (forward function).
Set parameter F15.01 to 3 (reverse function).
Set other relevant parameters as needed, such as setting F00.11 to 1 (terminal operation command channel).

2.2 External Potentiometer Speed Adjustment Wiring and Parameter Setting
Wiring Method
Connect terminal 1 of the external potentiometer to the +10V terminal of the inverter.
Connect terminal 2 of the external potentiometer to the AI1 terminal of the inverter.
Connect terminal 3 of the external potentiometer to the GND terminal of the inverter.

Parameter Setting
Enter programming mode, set parameter F16.01 to 2 (frequency setting channel).
Adjust F16.05 (AI1 offset) and F16.06 (AI1 gain) as needed to calibrate the speed adjustment range.
Ensure F00.10 is set to 3 (analog setting) to use the external potentiometer for speed adjustment.

HPMONT VFD HD20 series control circuit wiring diagram

III. Analysis and Solutions for Inverter Fault Codes
3.1 Common Fault Codes and Causes
E0001: Overcurrent protection. Possible causes include motor stall, excessive load, or incorrect parameter settings.
E0007: Overvoltage speed loss. Possible causes include excessively short deceleration time settings or excessive load inertia.
E0015: Input phase loss. Possible causes include input power phase loss or loose wiring.
E0016: Output phase loss. Possible causes include motor or cable damage.
E0017: Inverter overload. Possible causes include excessive load or poor heat dissipation.

3.2 Solutions
E0001: Check if the motor and load are normal, adjust parameters F09.07 (motor torque boost) and F09.09 (motor slip compensation gain).
E0007: Increase deceleration time, adjust parameters F19.18 (overvoltage speed loss function selection) and F19.19 (overvoltage speed loss point).
E0015: Check the input power supply and wiring to ensure normal three-phase power.
E0016: Check motor and cable connections to ensure no damage or looseness.
E0017: Check if the load is excessive, improve heat dissipation conditions, adjust parameters F20.01 (overload pre-alarm detection level) and F20.02 (overload pre-alarm detection time).

Summary
This operation guide provides a detailed introduction to the functions of the operation panel, wiring and parameter settings for terminal start/stop and external potentiometer speed adjustment methods, as well as analysis and solutions for common fault codes of the Hpmont HD20 series inverter. By following this guide, users can smoothly operate and maintain the inverter, ensuring normal equipment operation. During operation, please ensure safety and avoid electric shock and other potential risks. For complex issues, please contact Longi electrical technicians for assistance.

Posted on Leave a comment

Operation Manual and User Guide for Shihlin VFD SS Series

I. Description of Operation Panel Functions and Process for Restoring Factory Default Settings

  1. Description of Operation Panel Functions

The operation panel of Shihlin VFD SS series is powerful, facilitating user settings and monitoring. The operation panel mainly includes the following function keys and indicators:

RUN/STOP Key: Used to start and stop the VFD.
Frequency Adjustment Knob: Used to manually adjust the output frequency of the VFD.
Mode Switch Key: Used to switch between different operation modes, such as PU mode, JOG mode, external mode, etc.
Monitor/Set Key: Used to switch between monitor mode and set mode.
LED Indicators: Including running indicator, frequency monitor indicator, voltage monitor indicator, etc., used to indicate the current status of the VFD.

  1. Process for Restoring Factory Default Settings

If you need to restore the VFD parameters to their factory defaults, follow these steps:

Switch to Monitor Mode: Press the Monitor/Set key to ensure the VFD is in monitor mode.
Read Parameter Pr998: Enter the parameter setting mode on the operation panel, find parameter Pr998, and read its current value.
Write Parameter Pr998: Write the read Pr998 value again. At this point, the VFD will automatically initialize the parameters, and all parameters will be restored to their factory defaults.
Restart the VFD: To ensure the parameters are successfully restored, it is recommended to restart the VFD.

Shilin VFD SS series operation panel DU01

II. Terminal Start and External Potentiometer Speed Adjustment Wiring and Parameter Debugging

  1. Terminal Start Wiring and Parameter Debugging

If you need to start the VFD via terminal, you need to connect the external control signal to the corresponding control terminal of the VFD. Taking the STF (forward start) terminal as an example, the wiring and parameter debugging process is as follows:

Wiring: Connect the positive pole of the external control signal to the STF terminal, and the negative pole to the common terminal SD.
Parameter Settings:
Enter the parameter setting mode, set Pr79 to 2 (external mode).
Set parameters such as start frequency (Pr13) and upper limit frequency (Pr1) as needed.
Ensure that the STF terminal function is correctly set (default is forward start function).

  1. External Potentiometer Speed Adjustment Wiring and Parameter Debugging

If you need to adjust the output frequency of the VFD through an external potentiometer, you need to connect the output signal of the potentiometer to the analog signal input terminal of the VFD. Taking a 0~10V voltage signal as an example, the wiring and parameter debugging process is as follows:

Wiring: Connect the positive output of the potentiometer to the AI1 (2-5) terminal of the VFD, and the negative output to the common terminal GND.
Parameter Settings:
Enter the parameter setting mode, set Pr73 to 1 (select 0~10V voltage signal input range).
Set Pr38 to the desired voltage-frequency conversion relationship, for example, when the potentiometer outputs 10V, the VFD outputs a frequency of 50Hz.
Set Pr79 to a suitable operation mode, such as external mode or mixed mode.
Ensure that other relevant parameters (such as acceleration and deceleration time, torque compensation, etc.) have been set according to actual needs.

Shilin VFD SS series wiring diagram

III. Analysis and Solutions for Fault Alarms

The Shihlin VFD SS series may encounter various fault alarms during operation. Below are some common fault alarm codes, their analysis, and solutions:

ERR (Error):
Cause: May be caused by insufficient power supply voltage, the RESET terminal being connected, poor contact between the operator and the main unit, internal circuit failure, or CPU malfunction.
Solution: Check if the power supply voltage is normal; disconnect the reset switch; ensure good connection between the operator and the main unit; if the problem persists, the VFD may need to be replaced or restarted.
OC1 (Overcurrent During Acceleration), OC3 (Overcurrent During Deceleration):
Cause: Usually caused by excessive load, too short acceleration/deceleration time, or abnormal regenerative braking resistor.
Solution: Check if the load is excessive and reduce it appropriately; extend the acceleration/deceleration time; check if the regenerative braking resistor is connected properly and has the correct resistance.
OV2 (Overvoltage at Constant Speed):
Cause: May be caused by excessive voltage between terminals P-N.
Solution: Check if a regenerative braking resistor is connected between terminals P-PR and if the connection is normal; if regenerative function is not needed, short-circuit between P-PR.
THT (IGBT Module Overheat):
Cause: The IGBT module temperature is too high.
Solution: Check if the ambient temperature around the VFD is too high; ensure good heat dissipation of the VFD; check if the setting of the electronic thermal relay capacity is reasonable.
BE (Brake Transistor Abnormal):
Cause: External motor thermal relay actuation.
Solution: Check if the capacity of the external thermal relay matches the motor capacity; reduce the load to avoid frequent actuation of the thermal relay.

By carefully reading this user manual and following the above operation guide, users can better understand and use the Shihlin VFD SS series, ensuring normal operation and efficient working of the equipment.

Posted on Leave a comment

Key Points of Yufeng Inverter YF6800B Manual: Overview of Operation Methods, Terminal Start-up, External Potentiometer Speed Control Settings (with Specific Parameters), Fault Diagnosis and Resolution.

YF6800B Series Yufeng Inverter Manual Key Points Introduction

I. Operation Overview

The Yufeng Inverter YF6800B series boasts a straightforward operation process, primarily encompassing power-on/off and parameter settings. Upon powering on, ensure a stable power supply before initiating the inverter through the start button on the control panel or remote signals. To power off, first halt motor operation via the control panel or remote signals before cutting off the inverter’s power supply for device safety. Regarding parameter settings, users can navigate through the control panel’s buttons or connect to a computer using dedicated software to access the parameter setting mode, enabling precise adjustments to key parameters such as frequency, voltage, and current limits to meet diverse operational demands across various working conditions.

II. Terminal Start Configuration Method

Terminal start represents a commonly utilized control method for inverters, with its setup process encompassing wiring and parameter configuration.

  1. Wiring: Adhere to the wiring diagram outlined in the manual, connecting the inverter’s RUN (operate) and STOP (halt) terminals to the corresponding output terminals of external control devices like PLCs or buttons. Ensure secure and reliable connections, avoiding looseness or short circuits.
  2. Parameter Configuration: Navigate to the terminal control-related options within the inverter’s parameter settings to activate terminal control mode. Specific parameter configurations may include:
    • Input Point Function Configuration: Assign the RUN and STOP terminals’ corresponding input points to control start and stop operations, respectively.
    • Multi-speed Configuration (if applicable): Configure additional input points to correspond with distinct speed segments for multi-speed control.
    • Forward/Reverse Configuration (if required): Establish forward and reverse control logic to ensure the motor rotates in the anticipated direction.

III. External Potentiometer Speed Regulation Configuration Method

External potentiometer speed regulation offers a simple and intuitive means of speed adjustment, also encompassing wiring and parameter configuration.

  1. Wiring: Connect the external potentiometer’s output terminal to the inverter’s analog input terminal (e.g., AI1), with the potentiometer’s ends respectively wired to power and ground, forming a complete circuit. Select an appropriate power supply voltage and potentiometer resistance range to ensure precision and stability in speed regulation.
  2. Parameter Configuration: Locate the analog input-related options within the inverter’s parameter settings for the following configurations:
    • Input Source Configuration: Assign AI1 as the speed reference source.
    • Input Range Configuration: Match the inverter’s input range with the potentiometer’s output range.
    • Gain Configuration: Adjust the gain parameter to alter speed regulation sensitivity, facilitating smooth motor speed adjustment according to the potentiometer’s output.

IV. Fault Diagnosis and Resolution Methods

During the utilization of the Yufeng Inverter YF6800B, various faults may arise. Below are some common faults and their corresponding diagnosis and resolution methods:

  1. Overcurrent Protection: Inspect if the motor and load are excessively large or short-circuited, adjusting the load or replacing the motor as necessary. Additionally, verify if the inverter’s output current settings are reasonable.
  2. Overvoltage/Undervoltage Protection: Check if the input power supply voltage remains stable within the specified range. If voltage fluctuations are significant, implement voltage stabilization measures.
  3. Overheat Protection: Ensure the inverter’s cooling fan operates normally, cleaning dust and debris from the heat sink. If the ambient temperature is excessively high, adopt cooling measures.
  4. Communication Failure: Verify the secure and reliable connection of communication lines, along with accurate communication parameter settings. Attempt to restore communication by re-powering or restarting the device.
  5. Control Malfunction: Inspect if the control signal input is accurate and the control logic aligns with the set requirements. For complex control logic, utilize professional tools for fault location and analysis.

By adopting these methods, users can swiftly diagnose and resolve faults encountered during inverter operation, ensuring safe and stable device functioning.

Posted on Leave a comment

Mitsubishi E700(E720,E740) Inverter Operation Guide: Terminal Start, Potentiometer Speed Control, and Fault Handling

Mitsubishi E700 Inverter Operation Guide: Terminal Start, Potentiometer Speed Control, and Fault Handling

The Mitsubishi E700 series inverter is widely used in various industrial control applications due to its high performance and reliability. This guide aims to introduce the terminal start method, potentiometer frequency control, and analyze common fault codes and their solutions for this series of inverters.

Mitsubishi Inverter E700 Series Terminal Control Mode Wiring Diagram

I. Terminal Start Method
The terminal start function of the Mitsubishi E700 inverter allows users to control the inverter’s start and stop via external signals. Here are the basic steps to achieve terminal start:

Set the Pr.79 Operation Mode Selection Parameter:
Adjust the Pr.79 parameter to the appropriate operating mode for external control. For example, setting it to “2” puts the inverter in external operation mode, while “3” allows joint control via the operation panel and external signals.
Wiring:
Connect the STF (forward start signal) and STR (reverse start signal) terminals to the external control device. These signals are usually dry contact signals that initiate forward or reverse rotation when they are ON.
Ensure the voltage level of the control circuit matches the inverter’s requirements.
Testing and Debugging:
After wiring and parameter settings, conduct functional tests to ensure the inverter responds correctly to external start signals.
II. Potentiometer Frequency Control
The Mitsubishi E700 inverter supports frequency adjustment via an external potentiometer, allowing for motor speed control. Here’s how to achieve it:

Parameter Settings:
Set the Pr.73 Analog Input Selection parameter to allow terminal 2 or 4 to receive analog signals (based on the inverter model and configuration).
Set Pr.161 to “1” to enable the M knob as a potentiometer mode, allowing frequency adjustment through rotating the M knob or an external potentiometer.
Wiring:
Connect the potentiometer’s output signal to the corresponding analog input terminal of the inverter (e.g., terminal 2 or 4).
Adjust the analog input gain and offset parameters (such as Pr.125 and C2) according to the potentiometer’s resistance range and output voltage/current range.
Debugging:
Rotate the potentiometer and observe the inverter’s output frequency changes to ensure the speed control function works properly.
III. Fault Codes and Solutions
During operation, the Mitsubishi E700 inverter may encounter various faults, displaying corresponding error codes. Here are some common fault codes and their solutions:

E.OC1 (Overcurrent During Acceleration):
Cause: Motor stall, too short acceleration time setting, or improper motor capacity selection.
Solution: Check the motor and load for abnormalities, extend the acceleration time, and adjust the motor capacity selection.
E.OV1 (Regenerative Overvoltage During Acceleration):
Cause: Excessive regenerative energy generated during motor deceleration, causing high DC bus voltage in the inverter.
Solution: Extend the deceleration time, enable the regenerative braking function (e.g., connect braking resistors or braking units).
E.THT (Inverter Overload):
Cause: Heavy load, high ambient temperature, or poor heat dissipation.
Solution: Reduce the load, improve heat dissipation conditions, or increase the inverter capacity.
E.OC3 (Overcurrent During Deceleration):
Cause: High load inertia during deceleration, too short deceleration time setting.
Solution: Extend the deceleration time or enable the regenerative braking function.
Er1 (Write Prohibited Error):
Cause: Attempting to modify parameters while writes are prohibited.
Solution: Check the Pr.77 Parameter Write Selection setting to ensure parameter writes are allowed.
By mastering the terminal start, potentiometer speed control functions, and fault handling methods of the Mitsubishi E700 inverter, you can effectively enhance equipment efficiency, stability, and reduce maintenance costs. We hope this guide aids you in using the Mitsubishi E700 series inverter.

Posted on Leave a comment

Maintenance and Care Guidelines for NETZSCH TG209 Thermogravimetric Analyzer Ensuring Optimal Performance and Longevity

Maintenance and Care for NETZSCH TG209 Thermogravimetric Analyzer: Ensuring Long-Term Stability and Measurement Accuracy

Physical picture of the NIO TG209 thermogravimetric analyzer

Maintaining and caring for the NETZSCH TG209 Thermogravimetric Analyzer is crucial to ensure its long-term stability and measurement accuracy. Here are some key steps and considerations for proper maintenance:

I. Daily Cleaning

  1. Cleaning Sample Pans: Keep sample pans clean before and after each measurement. Use air blowing or appropriate cleaning solutions to clean them, ensuring samples are not damaged.
  2. Cleaning Temperature Controller: Regularly clean the temperature controller with cleaning solutions or air blowing to ensure accurate temperature settings.
  3. Cleaning Computer: Clean the computer’s internal and external components, as well as input/output devices, at least once a year.
Dismantling and Cleaning Diagram of Naichi TG209 Thermogravimetric Analyzer

II. Component Inspection and Replacement

  1. Inspecting Accessories: Regularly inspect the analyzer’s accessories, such as heating elements, controllers, and temperature sensors, to ensure they are in good condition. Replace any aged or damaged components promptly.
  2. Replacing Filters: Based on usage, regularly replace oil absorption filters, filter elements, and gas filters to prevent contaminants from affecting measurement results.
  3. Checking and Replacing Sealing Rings: Regularly inspect the main unit and analyzer for any oil leaks. Replace sealing rings or gaskets if necessary.
Actual calibration diagram of thermogravimetric analyzer

III. Software and System Settings

  1. Software Updates: Keep the analyzer’s control software up to date to utilize the latest features and bug fixes.
  2. System Configuration: Ensure all system settings, such as temperature range and heating rate, are correctly configured to meet experimental requirements.

IV. Regular Maintenance

  1. Professional Maintenance: Request regular maintenance services from NETZSCH or authorized service centers, including deep cleaning, calibration, and performance checks.
  2. Long-Term Storage: If the analyzer will not be used for an extended period, follow the manufacturer’s recommendations for storage and maintenance to prevent component aging and damage.

V. Operational Considerations

  1. Sample Preparation: Ensure samples are uniform powders, and sample pans are dry to reduce measurement errors.
  2. Operational Procedures: Follow the NETZSCH TG209 Thermogravimetric Analyzer’s operating procedures and safety guidelines to ensure operator and equipment safety.
  3. Maintenance Logs: Establish a maintenance log to record the time, content, and replaced components of each maintenance activity, allowing for tracking of the equipment’s maintenance history and performance changes.

VI. Specific Maintenance Tasks

  1. Cleaning Support Rods: After prolonged use, support rods may accumulate residue from sample decomposition, affecting test accuracy. Regularly burn support rods in air or oxygen atmospheres at high temperatures to remove residue (typically once a week, depending on sampling frequency and instrument contamination).
  2. Furnace Maintenance: For models like the NETZSCH TG209F1 with ceramic furnaces, pay special attention to the furnace’s corrosion resistance and sealing. Regularly inspect the furnace for cracks or damage and repair promptly.

By considering these aspects of daily cleaning, component inspection and replacement, software and system settings, regular maintenance, operational considerations, and specific maintenance tasks, you can ensure the long-term stability and measurement accuracy of your NETZSCH TG209 Thermogravimetric Analyzer.

Posted on Leave a comment

Difuss DR5 Series Motor Soft Starter: External Terminal Control Operation and Fault Code Handling Methods

Difuss DR5 Series Motor Soft Starter: External Terminal Control Operation and Fault Code Handling Methods


Introduction

The Difuss DR5 Series Motor Soft Starter is an advanced device specifically designed for smooth motor startup and shutdown, widely applied in industrial automation. This article delves into the operational methods for external terminal control and outlines the fault codes along with their corresponding handling procedures, facilitating users in better utilizing and maintaining this equipment.

DR5 series Defuss soft start main circuit wiring diagram

I. External Terminal Control Operation Methods

1. External Terminal Configuration

The DR5 Series Soft Starter offers an extensive range of external terminal interfaces for remote control and status feedback. Users should connect external control signals (such as start, stop, reset, etc.) to the corresponding terminals based on their actual needs. Refer to the wiring diagram in the device’s manual for specific terminal configuration.

2. Start Operation

  • Power On: First, ensure that the power supply to the soft starter is correctly connected, and the motor wiring is accurate.
  • External Start Signal: Send a start signal (typically a normally open contact closure) to the start terminal of the soft starter. Subsequently, the soft starter will initiate the predefined start sequence, smoothly initiating motor rotation.

3. Stop Operation

  • External Stop Signal: Transmit a stop signal (also typically a normally open contact closure) to the stop terminal of the soft starter. The soft starter will then gradually reduce the motor’s speed to a stop, following the configured stop mode (e.g., free coasting, soft stop).

4. Reset Operation

  • Fault Reset: When the soft starter stops due to a fault, address the fault source first. Then, send a reset signal (either a pulse signal or a sustained closure signal) to the reset terminal to restore the soft starter to its normal state.

II. Fault Codes and Handling Methods

1. Common Fault Codes

During operation, the DR5 Series Soft Starter may encounter various faults, with corresponding fault codes displayed on its screen. Here are some common fault codes and their possible causes:

  • F01: Overcurrent Fault. It could be caused by excessive motor load or incorrect motor parameter settings.
  • F02: Overload Fault. The motor has been operating in an overloaded state for an extended period.
  • F03: Overheat Fault. The internal temperature of the soft starter is too high, potentially due to poor heat dissipation or a high ambient temperature.
  • F04: Phase Loss Fault. The input power supply or motor is missing one or more phases.
  • F05: Communication Fault. Communication with the host computer or remote control system has been interrupted.

2. Handling Methods

  • Check Power Supply and Motor: Verify that the input power supply is normal, the motor wiring is accurate, and there are no short circuits or open circuits.
  • Adjust Parameters: Adjust the relevant settings of the soft starter, such as startup time and stop mode, according to the actual motor parameters.
  • Improve Heat Dissipation: Clean dust around the soft starter, ensure proper ventilation, and reduce the ambient temperature.
  • Check Communication Lines: Inspect the communication lines with the host computer or remote control system to ensure stable and reliable connections.
  • Restart the Device: After addressing the fault and resetting, attempt to restart the soft starter to observe whether it returns to normal operation.

Conclusion

The Difuss DR5 Series Motor Soft Starter is a powerful and user-friendly motor control device. By correctly configuring the external terminals, mastering operational methods, and promptly handling fault codes, users can fully leverage its performance advantages, achieving smooth motor startup and shutdown while enhancing production efficiency and equipment safety. We hope this article provides valuable guidance for users in utilizing and maintaining the DR5 Series Soft Starter.