Posted on Leave a comment

HOLIP Frequency Converter HLP-SV Series User Manual Operation Guide

I. Introduction to Operation Panel Functions and Parameter Settings

Introduction to Operation Panel Functions

The operation panel (LCP operator) of the HOLIP HLP-SV series frequency converter provides an intuitive interface for users to set parameters and monitor operations. The operation panel mainly includes a display screen, function keys, navigation keys, potentiometers, and indicators. The display screen shows current parameters, converter status, and other data. The function keys are used to select menus and execute operations. The navigation keys allow for setting, switching, and changing operations within parameter groups, parameters, and parameter internals. The potentiometer is used to adjust motor speed in manual mode. The indicators show the operating status of the converter, such as power access, warnings, and alarms.

HLP-SV power on standby state

Initializing Parameters

To initialize the converter parameters, users can set parameter 14-22 to 2 to restore the converter to factory defaults. This operation will reset all parameters except parameters 15-03 (operating hours counter), 15-04 (overheat count), and 15-05 (overvoltage count) to their factory default values. Before performing this operation, ensure that important parameter settings have been backed up.

Setting and Removing Passwords

To prevent unauthorized parameter modifications, users can set a password. Parameter 0-60 can be used to set a password for the main menu, with a range of 0-999. After setting the password, only by entering the correct password can protected parameters be modified. To remove the password, simply set parameter 0-60 to 0.

Physical image on the right side of HLP-SV

Setting Parameter Access Restrictions

The HOLIP frequency converter provides parameter access restriction functions. Users can control the activation and editing permissions of different menus by setting parameters 0-10, 0-11, and 0-12. For example, setting parameter 0-10 to 1 or 2 can activate Menu 1 or Menu 2, respectively. Setting parameter 0-11 to 1 or 2 allows editing of Menu 1 or Menu 2, respectively. Setting parameter 0-12 to 20 enables parameter association between Menu 1 and Menu 2, ensuring that parameters that cannot be changed during operation can be synchronized between the two menus.

II. Terminal Forward/Reverse Control and External Potentiometer Speed Regulation

Terminal Forward/Reverse Control

To achieve motor forward/reverse control, users need to connect external control signals to the digital input terminals of the converter. Typically, terminals 18 and 19 are used to control motor forward and reverse, respectively. The specific wiring method is as follows:

  • Forward: Connect the external control signal to terminal 18 (DI1) and the common terminal (COM).
  • Reverse: Connect the external control signal to terminal 19 (DI2) and the common terminal (COM).

Additionally, set the functions of terminals 18 and 19 to “Start” and “Reverse” in parameters 5-10 and 5-11, respectively. Also, set the motor rotation direction to “Bidirectional” in parameter 4-10.

External Potentiometer Speed Regulation

External potentiometer speed regulation is a commonly used speed control method. Users can change the motor speed by rotating the potentiometer. The specific wiring method is as follows:

  • Connect one end of the external potentiometer to the +10V power terminal of the converter (e.g., terminal 50).
  • Connect the other end of the external potentiometer to the analog input terminal of the converter (e.g., terminal 53) and ground (GND).

Then, select “Voltage Signal” as the input signal type for terminal 53 in parameter 6-19, and set the source of Reference Value 1 to “LCP Potentiometer” in parameter 3-15. By rotating the external potentiometer, users can adjust the motor speed in real-time.

HOLIP-SV standard wiring diagram

III. Fault Codes and Their Solutions

The HOLIP HLP-SV series frequency converter has comprehensive protection functions. When a fault occurs, the converter will display the corresponding fault code. The following are some common fault codes, their meanings, and solutions:

  • W/A 2: Signal Float Zero Fault
    • Meaning: This fault occurs when the converter detects that the float zero value of terminal 53 or 60 is less than 50% of the set value.
    • Solution: Check if the signal line connection is normal and ensure a stable signal source.
  • W/A 4: Power Phase Loss
    • Meaning: There is a phase loss or excessive voltage imbalance at the power supply terminal.
    • Solution: Check the power input line and power supply voltage for normalcy.
  • W/A 7: Overvoltage
    • Meaning: The intermediate circuit voltage (DC) exceeds the converter’s overvoltage limit.
    • Solution: Check if the power supply voltage is too high, connect a braking resistor, or activate “Braking Function/Overvoltage Control” in parameter group 2.
  • W/A 9: Converter Overload
    • Meaning: The converter’s electronic thermal protection indicates that the converter is about to disconnect due to overload.
    • Solution: Check if the mechanical system is overloaded, adjust the load, or increase the converter capacity.
  • W/A 10: Motor Overheat
    • Meaning: The electronic thermal relay (ETR) protection device indicates motor overheat.
    • Solution: Check the motor load and motor parameter settings for correctness, reduce the load, or improve the cooling conditions.
  • A 16: Output Short Circuit
    • Meaning: There is a short circuit in the motor terminal or motor.
    • Solution: Check if the motor insulation is damaged and eliminate the short circuit fault.

The above are only some fault codes and their solutions. Users can refer to the fault code table in the converter user manual for troubleshooting other faults encountered during use.

IV. Conclusion

The HOLIP HLP-SV series user manual provides detailed operation guides and troubleshooting methods for users. By familiarizing with the functions of the operation panel and parameter setting methods, users can easily initialize the converter, set passwords, restrict parameter access, achieve forward/reverse control and external potentiometer speed regulation, and more. At the same time, understanding common fault codes and their solutions helps users quickly troubleshoot and resolve converter faults, ensuring normal equipment operation.

Posted on Leave a comment

FANUC Servo Drive βISVSP A06B Maintenance Guide: Troubleshooting No Display Issues


FANUC servo drives, specifically the βISVSP A06B series, are widely used in various automated equipment, providing efficient and precise motor control. However, in practical use, various faults may arise, with one of the most common being the lack of display. A non-functional display is often caused by power issues, control circuit problems, or hardware malfunctions. This article explores the maintenance approach for resolving no display issues in FANUC servo drives, focusing on troubleshooting steps and solutions.

I. Fault Phenomenon: No Display

The no display fault in FANUC servo drives refers to a situation where the device powers on, but the panel displays no information. The indicator lights might be completely off, or the screen may be unresponsive, suggesting that there could be problems with the control circuits, display module, or power supply module inside the drive. If not addressed in a timely manner, this issue could prevent the device from starting or executing control instructions, which can negatively impact production efficiency.

II. Troubleshooting Approach

When encountering a no display issue in a servo drive, it’s essential to systematically check the device. Below are the common troubleshooting steps:

1. Check Power Supply Input

The first step is to verify if the power supply to the servo drive is functioning correctly. Power is the foundation for all electronic devices, and any instability or interruption in the power supply can prevent the drive from functioning properly.

  • Check the Power Voltage: Use a multimeter to check the voltage at the input terminals of the servo drive, confirming that it falls within the specified range. The FANUC servo drive typically requires a three-phase AC input voltage within a certain range.
  • Check Power Connections: Verify that the power supply cables are correctly connected and not damaged or disconnected. Poor power contact can lead to unstable voltage supply, which can result in no display issues.

2. Check Fuses and Circuit Breakers

Servo drives are equipped with fuses or circuit breakers to prevent damage from excessive current. If a fuse blows or the circuit breaker trips, the device will fail to operate properly.

  • Check the Fuse: Open the servo drive and inspect the fuses in the power section. If the fuse is blown, replace it with one of the same rating.
  • Check the Circuit Breaker: Some servo drives come with an internal circuit breaker that trips in case of voltage abnormalities or overcurrent. If the circuit breaker has tripped, reset it manually.

3. Check the Main Control Circuit

If the power supply is fine, the next step is to inspect the servo drive’s main control circuit. The control circuit acts as the brain of the servo drive, and any malfunction in this area could result in a non-responsive display.

  • Check the Control Chip: The control chip is usually located centrally on the circuit board and is responsible for processing input signals and controlling the operation of the drive. Look for signs of overheating, burning, or damage around the chip. Use an oscilloscope or multimeter to check the power supply voltage and signal output of the chip to ensure it’s functioning properly.
  • Check Circuit Connections: The circuit board in the servo drive is connected to various modules via connectors. Check if any connectors are loose or disconnected, as poor connections can prevent signals from transmitting correctly.

4. Check the Display Module and Signal Transmission

The display module is responsible for showing system status information to the operator. If the display module fails, it could lead to a no display situation.

  • Check the Display Screen: Inspect the power supply input terminals and signal transmission lines to the display screen to ensure they are properly connected. If the display module itself is faulty, it may need to be replaced.
  • Check Signal Transmission: If the display module appears intact, the issue could lie with the signal transmission. Inspect the signal lines between the main control board and the display module to ensure that signals are properly transmitted.

5. Check Capacitors and Power Filtering Circuits

Capacitors and filtering circuits help stabilize the voltage supply, especially for high-frequency currents. If the capacitors are damaged, the power supply could become unstable, affecting the drive’s operation.

  • Check the Capacitors: Look for signs of bulging, leakage, or aging in the capacitors. If a capacitor is faulty, it should be replaced with one of the same model.
  • Check the Filtering Circuits: The components in the filtering circuits may also be damaged, which can cause unstable voltage output. Inspect these components and replace them as necessary.

III. Common Fault Analysis and Solutions

1. Unstable Power Supply Leading to No Display

An unstable power supply voltage can prevent the drive from starting properly. In this case, check the stability of the power supply and ensure the voltage is within the specified range. If issues are found with the power supply, it may be necessary to replace the power module or reconnect the power supply.

2. Control Circuit Malfunction

A malfunctioning control circuit can prevent the system from starting or lead to a no display issue. Typically, this fault requires replacing damaged components. Commonly damaged components include control chips, integrated circuits, and resistors.

3. Display Module Failure

If the display module itself is faulty, it could be due to issues with the backlight, circuit board, or the display screen. Inspect the power input terminals and signal transmission lines to confirm the issue. If the display screen is damaged, replacing the display module will likely resolve the problem.

4. Capacitor or Filtering Circuit Issues

Damaged capacitors can cause unstable power, affecting the drive’s operation. Replacing faulty capacitors or repairing the filtering circuits should solve this issue.

IV. Conclusion

The no display issue in FANUC servo drives βISVSP A06B series is typically related to power problems, control circuit failures, or display module malfunctions. Through systematic troubleshooting and careful inspection, the problem can usually be pinpointed and resolved. During maintenance, special attention should be paid to power stability, circuit connections, and the condition of critical components. For more complex issues, professional diagnostic tools may be required, and damaged components should be replaced to restore the device to normal operation. Timely and effective maintenance ensures the long-term stability and performance of FANUC servo drives, helping to maintain production efficiency.

Posted on Leave a comment

User Manual Guide for Vacon NXS_NXP Series Inverters

I. Introduction to the Operating Panel Functions

The Vacon NXS_NXP series inverters are equipped with an intuitive and user-friendly operating panel, providing users with a convenient interface for operation and monitoring. The operating panel typically includes a display screen, multiple function buttons, and status indicators. The display screen is used to show the current operating status, parameter values, and fault information. The function buttons are used for navigating menus, modifying parameter values, resetting faults, and other operations. The status indicators display the running status of the inverter, such as running, stopped, alarming, and faulting.

NXP physical image

II. How to Initialize Parameters (Specific Parameters)

Before using the Vacon NXS_NXP series inverters, users may need to initialize the parameters to ensure all settings are at their default values. The initialization process usually includes restoring the factory settings of the inverter. Users can follow these steps to initialize the parameters:

  1. Enter the System Menu: First, access the system menu (usually labeled as M6) through the operating panel.
  2. Select Parameter Sets: In the system menu, find the parameter set option (typically labeled as S6.3.1).
  3. Restore Factory Defaults: In the parameter set option, select the “Load Factory Defaults” option and confirm the execution. This will restore all parameters of the inverter to their factory settings.

III. How to Set and Reset Passwords (Specific Parameters)

To protect the settings of the inverter from unauthorized changes, the Vacon NXS_NXP series inverters provide a password protection feature. Users can follow these steps to set and reset passwords:

  1. Setting a Password:
    • Enter the system menu (M6).
    • Find the password setting option (usually labeled as S6.5.1).
    • Enter the password value (typically ranging from 1 to 65535) through the buttons on the operating panel.
    • Confirm the password setting.
  2. Resetting a Password:
    • Enter the system menu (M6).
    • Find the password setting option (S6.5.1).
    • Enter the current password (if already set).
    • Set the password value to 0 and confirm the execution. This will disable the password protection feature.
NXS-NXP actual wiring diagram

IV. How to Set Parameter Access Restrictions (Specific Parameters and Operations)

In addition to password protection, the Vacon NXS_NXP series inverters also provide a parameter access restriction feature, allowing users to restrict access and modification of specific parameters. Users can follow these steps to set parameter access restrictions:

  1. Enter the System Menu (M6).
  2. Find the Parameter Lock Option (usually labeled as S6.5.2).
  3. Enable Parameter Lock: Set the parameter lock option to “Locked” and confirm the execution. This will restrict access and modification of most parameters.
  4. Disable Parameter Lock: When needing to modify locked parameters, first set the parameter lock option to “Unlocked” and confirm the execution.

V. How to Achieve External Terminal Forward/Reverse Control and External Potentiometer Speed Regulation

The Vacon NXS_NXP series inverters support motor forward/reverse control through external terminals and speed regulation through external potentiometers. Users need to set the following parameters and connect corresponding terminals:

  1. Forward/Reverse Control:
    • Parameter Settings: No specific parameter settings are required, but ensure the control signal source is set to external terminal control (P3.1=1).
    • Wiring: Connect the external forward button or switch to DIN1 (or the designated forward input terminal), and connect the external reverse button or switch to DIN2 (or the designated reverse input terminal).
  2. External Potentiometer Speed Regulation:
    • Parameter Settings: Ensure AI1 (or the designated analog input terminal) is set to accept analog voltage or current signals (specific settings depend on the potentiometer type).
    • Wiring: Connect the output end of the potentiometer to AI1 (or the designated analog input terminal), and connect the common terminal of the potentiometer to AI1- (or the corresponding common terminal).

VI. Fault Codes and Their Solutions

The Vacon NXS_NXP series inverters feature comprehensive fault diagnosis capabilities. When a fault is detected, the inverter will display the corresponding fault code and fault information. The following are some common fault codes, their meanings, and solutions:

  1. Fault Code F01: Overcurrent
    • Meaning: Motor current exceeds the rated value.
    • Solution: Check if the motor load is too heavy, and check for short circuits or grounding in the motor and cables.
  2. Fault Code F02: Overvoltage
    • Meaning: DC bus voltage is too high.
    • Solution: Check if the power supply voltage is too high, extend the deceleration time, or increase the braking resistor.
  3. Fault Code F03: Ground Fault
    • Meaning: Motor or cable grounding.
    • Solution: Check the insulation resistance of the motor and cables.
  4. Fault Code F05: Charging Switch Fault
    • Meaning: Charging switch failure.
    • Solution: Check the charging switch and its connection lines, and replace the charging switch if necessary.

(Note: The above are only examples of some fault codes. For a complete list of fault codes and solutions, please refer to the inverter user manual.)

Through this guide, we hope to help users better understand and use the Vacon NXS_NXP series inverter user manual, achieving efficient and safe frequency control.

Posted on Leave a comment

The Meaning and Solutions for AL-24 Alarm on FANUC αi Series Spindle Amplifiers

In the maintenance and repair of CNC machine tools, fault alarms are a common occurrence. For equipment using FANUC αi series spindle amplifiers, the AL-24 alarm is a typical code. This article will explore the meaning of this alarm, possible causes, and solutions, providing theoretical support and practical guidance for CNC servo system repairs.


AL-24

1. Meaning of the AL-24 Alarm

According to FANUC’s official documentation, the AL-24 alarm indicates that the serial communication data between the CNC (Computer Numerical Control system) and the spindle amplifier module contains errors. This alarm typically occurs when there is an abnormality in the communication link between the CNC and the spindle amplifier. It is important to note that this alarm does not necessarily indicate hardware failure; in most cases, it is caused by communication issues or external interference.

Scenarios Triggering the Alarm

  • The CNC is powered off while the spindle amplifier remains energized.
  • Serial communication is disrupted, causing data transmission errors.
  • Communication cables are loose, damaged, or poorly connected.

2. Possible Causes of the AL-24 Alarm

When diagnosing the AL-24 alarm, the investigation should focus on the communication link, cable conditions, and hardware status. Common causes include:

1. Communication Noise Interference

Serial data transmission between the CNC and the spindle amplifier may be disrupted by external electromagnetic noise, resulting in data errors and triggering the AL-24 alarm.

2. Cable Issues or Connection Problems

The communication cable is a critical link between the CNC and the spindle amplifier. Possible issues include:

  • Cable aging or internal breakage.
  • Loose or improperly secured connectors.
  • In the case of fiber optic communication, damaged optical connectors or modules.

3. Bundling of Communication and Power Cables

When communication cables are bundled with spindle or servo motor power cables, high-frequency currents may cause electromagnetic interference, affecting communication stability.

4. Hardware Malfunction

Hardware-related issues that may trigger the AL-24 alarm include:

  • Faulty internal circuit boards in the spindle amplifier module (SPM).
  • Damaged communication interface boards or modules in the CNC control system.

5. Parameter Configuration Issues

Incorrect communication parameter settings in the spindle amplifier or CNC can also lead to communication failures.


A06B-6140-h055

3. Solutions for the AL-24 Alarm

When addressing the AL-24 alarm, follow these steps for systematic troubleshooting:

1. Verify CNC Power Status

Check whether the CNC is properly powered. If the CNC is off, the spindle amplifier cannot establish communication, which is a normal reason for the alarm.

  • Action: Ensure the CNC is fully powered and there are no additional alarm codes.

2. Inspect Communication Cables

Communication cables are crucial for the connection between the CNC and the spindle amplifier. Diagnosing cable issues is a key step.

  • Steps:
    • Inspect the cable’s exterior for damage or aging.
    • Ensure connectors are securely plugged in.
    • For fiber optic communication, check the cleanliness of the optical connectors and the condition of the optical modules.
  • Actions:
    • Replace the communication cable and reconnect.
    • If optical modules are faulty, contact the supplier for replacement.

3. Address Noise Interference

Communication stability can be compromised by noise interference, particularly when communication cables are bundled with power cables.

  • Steps:
    • Check the routing of communication cables to ensure they are separated from power and servo cables.
    • Use well-shielded cables or add shielding to existing cables.
  • Actions: Separate communication cables from power cables to maintain a safe physical distance.

4. Examine the SPM Module

The internal circuit board of the spindle amplifier (SPM) may fail due to aging or external impact.

  • Actions:
    • Inspect the SPM module for physical damage or burn marks.
    • Contact FANUC support for repair or replacement if the module is faulty.

5. Validate CNC Hardware

If the SPM is functioning correctly, check the communication interface boards or modules on the CNC side.

  • Actions:
    • Replace the relevant communication boards and test.
    • Check the CNC’s alarm log for related issues.

6. Correct Parameter Settings

Incorrect communication parameters may prevent successful communication between the CNC and the SPM.

  • Actions:
    • Reconfigure communication parameters based on the equipment model and manual.
    • Ensure communication speed, protocols, and other settings match between the SPM and CNC.

4. Preventive Measures

To reduce the likelihood of AL-24 alarms, consider the following preventive measures:

  1. Regular Cable Inspection:
    • Ensure communication cables are free from aging, breakage, or damage.
    • Use durable, high-quality shielded cables.
  2. Optimize Cable Routing:
    • Keep communication cables separate from power lines to avoid interference.
  3. Routine Hardware Maintenance:
    • Inspect the SPM and CNC hardware regularly and replace aging components promptly.
    • Clean amplifier and cable interfaces to prevent dust accumulation.
  4. Environmental Control:
    • Minimize strong electromagnetic interference around the equipment.
    • Provide adequate cooling for amplifiers and control cabinets.

Conclusion

The AL-24 alarm, a common fault code in FANUC αi series spindle amplifiers, primarily reflects communication abnormalities between the CNC and the spindle amplifier. By understanding its meaning, identifying causes, and following a structured troubleshooting process, maintenance personnel can quickly resolve the issue. Additionally, implementing preventive measures can significantly reduce the occurrence of such alarms, ensuring long-term stability and performance of the equipment.

Posted on Leave a comment

Comprehensive Guide to FANUC Servo System Troubleshooting and Repair(DB DELAY FAILURE)

FANUC servo systems, widely used in industrial automation, are renowned for their reliability and precision. However, like any sophisticated equipment, they can experience faults that require systematic diagnosis and repair. This guide focuses on two common faults: “NEED REF RETURN” (Absolute Pulse Coder Alarm) and “DB RELAY FAILURE” (Dynamic Brake Relay Issue), along with general troubleshooting techniques.


DB DELAY FAILURE

1. “NEED REF RETURN” Alarm

Fault Description

The “NEED REF RETURN” alarm indicates that the absolute position data of the encoder is lost or the axis requires a reference return operation. This typically happens when:

  • The encoder battery voltage is low or the battery has failed.
  • The system loses its absolute position data due to a power interruption or improper initialization.

Repair Process

  1. Check the Encoder Battery:
    • Replace the battery if its voltage is below the specified threshold (typically 3.6V for FANUC systems).
    • Ensure the battery is replaced with the power ON to prevent loss of encoder data.
  2. Perform Reference Return:
    • Access the machine’s control interface and initiate the reference return operation for the affected axes.
    • Follow the machine tool builder’s specific procedures for homing operations.
  3. Inspect Encoder Wiring:
    • Verify that the encoder cables are securely connected and free from damage.
    • Check for continuity and signal integrity using a multimeter or oscilloscope if necessary.
  4. Reset the Alarm:
    • Once the reference return is completed, reset the alarm via the machine control panel.

A06B-6240-H105

2. “DB RELAY FAILURE” Alarm

Fault Description

The “DB RELAY FAILURE” alarm indicates an issue with the Dynamic Brake (DB) relay, responsible for safely braking the motor during stop or emergency stop conditions. Possible causes include:

  • A malfunctioning DB relay (burnt coil or damaged contacts).
  • Faults in the relay driver circuit.
  • Open or damaged connections in the DB circuit.

Repair Process

  1. Visual Inspection:
    • Open the servo amplifier and inspect the relay for signs of burning, discoloration, or physical damage.
    • Check the PCB for any visible defects such as burnt traces or damaged components.
  2. Test the DB Relay:
    • Use a multimeter to measure the resistance of the relay coil. A functional relay typically has a specific resistance value (e.g., tens to hundreds of ohms). If open or short-circuited, the relay needs replacement.
    • Inspect the relay contacts for proper operation and absence of welding or pitting.
  3. Inspect the Driver Circuit:
    • Check the transistors or ICs driving the DB relay for shorts or open circuits.
    • Use an oscilloscope to verify the control signal to the relay during operation.
  4. Verify DB Resistor and Wiring:
    • Ensure the dynamic braking resistor is intact and its connections are secure.
    • Measure the resistor’s value and compare it with the specifications.
  5. Replace Faulty Components:
    • Replace the relay or driver components if faults are detected.
    • Ensure replacement parts are genuine and match the original specifications.
  6. Reset and Test:
    • After repairs, reset the system and perform operational tests to confirm the alarm is cleared and the DB relay functions correctly.

A06B-6079-H207

3. General Troubleshooting Techniques

LED Indicators

  • Check the LED status on the servo amplifier front panel. LED patterns often provide diagnostic information about the amplifier’s status and errors.

Error Codes

  • Refer to the system’s maintenance manual for detailed descriptions of error codes.
  • FANUC manuals, such as the GFZ-65195EN/01, provide comprehensive troubleshooting steps for each alarm code.

Electrical Checks

  • Measure power supply voltages to ensure they are within specified ranges.
  • Inspect connectors, cables, and PCB traces for continuity and integrity.

Parameter Verification

  • Confirm that the servo parameters are set correctly. Incorrect parameters can lead to operational issues and alarms.

4. Preventive Maintenance Tips

  1. Regular Battery Replacement:
    • Schedule periodic checks and replacements for the encoder battery to avoid position loss.
  2. Keep Components Clean:
    • Clean the servo amplifier and surrounding areas to prevent dust and debris accumulation.
  3. Inspect Wiring:
    • Regularly inspect cables and connectors for wear, corrosion, or loose connections.
  4. Follow Manufacturer Guidelines:
    • Always adhere to FANUC’s maintenance and operational guidelines for optimal system performance.

A06B-6079-H207 power board and fault relay location

Conclusion

By understanding the causes and systematic repair methods for alarms like “NEED REF RETURN” and “DB RELAY FAILURE,” maintenance engineers can ensure minimal downtime and enhanced reliability of FANUC servo systems. Regular preventive maintenance further helps in avoiding recurring issues and extending the life of these critical components.

Comprehensive Guide to FANUC Servo System Troubleshooting and Repair

FANUC servo systems, widely used in industrial automation, are renowned for their reliability and precision. However, like any sophisticated equipment, they can experience faults that require systematic diagnosis and repair. This guide focuses on two common faults: “NEED REF RETURN” (Absolute Pulse Coder Alarm) and “DB RELAY FAILURE” (Dynamic Brake Relay Issue), along with general troubleshooting techniques.


1. “NEED REF RETURN” Alarm

Fault Description

The “NEED REF RETURN” alarm indicates that the absolute position data of the encoder is lost or the axis requires a reference return operation. This typically happens when:

  • The encoder battery voltage is low or the battery has failed.
  • The system loses its absolute position data due to a power interruption or improper initialization.

Repair Process

  1. Check the Encoder Battery:
    • Replace the battery if its voltage is below the specified threshold (typically 3.6V for FANUC systems).
    • Ensure the battery is replaced with the power ON to prevent loss of encoder data.
  2. Perform Reference Return:
    • Access the machine’s control interface and initiate the reference return operation for the affected axes.
    • Follow the machine tool builder’s specific procedures for homing operations.
  3. Inspect Encoder Wiring:
    • Verify that the encoder cables are securely connected and free from damage.
    • Check for continuity and signal integrity using a multimeter or oscilloscope if necessary.
  4. Reset the Alarm:
    • Once the reference return is completed, reset the alarm via the machine control panel.

2. “DB RELAY FAILURE” Alarm

Fault Description

The “DB RELAY FAILURE” alarm indicates an issue with the Dynamic Brake (DB) relay, responsible for safely braking the motor during stop or emergency stop conditions. Possible causes include:

  • A malfunctioning DB relay (burnt coil or damaged contacts).
  • Faults in the relay driver circuit.
  • Open or damaged connections in the DB circuit.

Repair Process

  1. Visual Inspection:
    • Open the servo amplifier and inspect the relay for signs of burning, discoloration, or physical damage.
    • Check the PCB for any visible defects such as burnt traces or damaged components.
  2. Test the DB Relay:
    • Use a multimeter to measure the resistance of the relay coil. A functional relay typically has a specific resistance value (e.g., tens to hundreds of ohms). If open or short-circuited, the relay needs replacement.
    • Inspect the relay contacts for proper operation and absence of welding or pitting.
  3. Inspect the Driver Circuit:
    • Check the transistors or ICs driving the DB relay for shorts or open circuits.
    • Use an oscilloscope to verify the control signal to the relay during operation.
  4. Verify DB Resistor and Wiring:
    • Ensure the dynamic braking resistor is intact and its connections are secure.
    • Measure the resistor’s value and compare it with the specifications.
  5. Replace Faulty Components:
    • Replace the relay or driver components if faults are detected.
    • Ensure replacement parts are genuine and match the original specifications.
  6. Reset and Test:
    • After repairs, reset the system and perform operational tests to confirm the alarm is cleared and the DB relay functions correctly.

3. General Troubleshooting Techniques

LED Indicators

  • Check the LED status on the servo amplifier front panel. LED patterns often provide diagnostic information about the amplifier’s status and errors.

Error Codes

  • Refer to the system’s maintenance manual for detailed descriptions of error codes.
  • FANUC manuals, such as the GFZ-65195EN/01, provide comprehensive troubleshooting steps for each alarm code.

Electrical Checks

  • Measure power supply voltages to ensure they are within specified ranges.
  • Inspect connectors, cables, and PCB traces for continuity and integrity.

Parameter Verification

  • Confirm that the servo parameters are set correctly. Incorrect parameters can lead to operational issues and alarms.

4. Preventive Maintenance Tips

  1. Regular Battery Replacement:
    • Schedule periodic checks and replacements for the encoder battery to avoid position loss.
  2. Keep Components Clean:
    • Clean the servo amplifier and surrounding areas to prevent dust and debris accumulation.
  3. Inspect Wiring:
    • Regularly inspect cables and connectors for wear, corrosion, or loose connections.
  4. Follow Manufacturer Guidelines:
    • Always adhere to FANUC’s maintenance and operational guidelines for optimal system performance.

Conclusion

By understanding the causes and systematic repair methods for alarms like “NEED REF RETURN” and “DB RELAY FAILURE,” maintenance engineers can ensure minimal downtime and enhanced reliability of FANUC servo systems. Regular preventive maintenance further helps in avoiding recurring issues and extending the life of these critical components.

FANUC servo systems, widely used in industrial automation, are renowned for their reliability and precision. However, like any sophisticated equipment, they can experience faults that require systematic diagnosis and repair. This guide focuses on two common faults: “NEED REF RETURN” (Absolute Pulse Coder Alarm) and “DB RELAY FAILURE” (Dynamic Brake Relay Issue), along with general troubleshooting techniques.


1. “NEED REF RETURN” Alarm

Fault Description

The “NEED REF RETURN” alarm indicates that the absolute position data of the encoder is lost or the axis requires a reference return operation. This typically happens when:

  • The encoder battery voltage is low or the battery has failed.
  • The system loses its absolute position data due to a power interruption or improper initialization.

Repair Process

  1. Check the Encoder Battery:
    • Replace the battery if its voltage is below the specified threshold (typically 3.6V for FANUC systems).
    • Ensure the battery is replaced with the power ON to prevent loss of encoder data.
  2. Perform Reference Return:
    • Access the machine’s control interface and initiate the reference return operation for the affected axes.
    • Follow the machine tool builder’s specific procedures for homing operations.
  3. Inspect Encoder Wiring:
    • Verify that the encoder cables are securely connected and free from damage.
    • Check for continuity and signal integrity using a multimeter or oscilloscope if necessary.
  4. Reset the Alarm:
    • Once the reference return is completed, reset the alarm via the machine control panel.

2. “DB RELAY FAILURE” Alarm

Fault Description

The “DB RELAY FAILURE” alarm indicates an issue with the Dynamic Brake (DB) relay, responsible for safely braking the motor during stop or emergency stop conditions. Possible causes include:

  • A malfunctioning DB relay (burnt coil or damaged contacts).
  • Faults in the relay driver circuit.
  • Open or damaged connections in the DB circuit.

Repair Process

  1. Visual Inspection:
    • Open the servo amplifier and inspect the relay for signs of burning, discoloration, or physical damage.
    • Check the PCB for any visible defects such as burnt traces or damaged components.
  2. Test the DB Relay:
    • Use a multimeter to measure the resistance of the relay coil. A functional relay typically has a specific resistance value (e.g., tens to hundreds of ohms). If open or short-circuited, the relay needs replacement.
    • Inspect the relay contacts for proper operation and absence of welding or pitting.
  3. Inspect the Driver Circuit:
    • Check the transistors or ICs driving the DB relay for shorts or open circuits.
    • Use an oscilloscope to verify the control signal to the relay during operation.
  4. Verify DB Resistor and Wiring:
    • Ensure the dynamic braking resistor is intact and its connections are secure.
    • Measure the resistor’s value and compare it with the specifications.
  5. Replace Faulty Components:
    • Replace the relay or driver components if faults are detected.
    • Ensure replacement parts are genuine and match the original specifications.
  6. Reset and Test:
    • After repairs, reset the system and perform operational tests to confirm the alarm is cleared and the DB relay functions correctly.

3. General Troubleshooting Techniques

LED Indicators

  • Check the LED status on the servo amplifier front panel. LED patterns often provide diagnostic information about the amplifier’s status and errors.

Error Codes

  • Refer to the system’s maintenance manual for detailed descriptions of error codes.
  • FANUC manuals, such as the GFZ-65195EN/01, provide comprehensive troubleshooting steps for each alarm code.

Electrical Checks

  • Measure power supply voltages to ensure they are within specified ranges.
  • Inspect connectors, cables, and PCB traces for continuity and integrity.

Parameter Verification

  • Confirm that the servo parameters are set correctly. Incorrect parameters can lead to operational issues and alarms.

4. Preventive Maintenance Tips

  1. Regular Battery Replacement:
    • Schedule periodic checks and replacements for the encoder battery to avoid position loss.
  2. Keep Components Clean:
    • Clean the servo amplifier and surrounding areas to prevent dust and debris accumulation.
  3. Inspect Wiring:
    • Regularly inspect cables and connectors for wear, corrosion, or loose connections.
  4. Follow Manufacturer Guidelines:
    • Always adhere to FANUC’s maintenance and operational guidelines for optimal system performance.

Conclusion

By understanding the causes and systematic repair methods for alarms like “NEED REF RETURN” and “DB RELAY FAILURE,” maintenance engineers can ensure minimal downtime and enhanced reliability of FANUC servo systems. Regular preventive maintenance further helps in avoiding recurring issues and extending the life of these critical components.

Posted on Leave a comment

Operation Guide for LS Inverter LSLV-M100 Series User Manual

I. Introduction to Operation Panel Functions and Password Setting/Locking

Introduction to Operation Panel Functions

The operation panel of the LS Inverter LSLV-M100 series integrates display and operation functions, facilitating intuitive operation and monitoring for users. The panel primarily consists of a digital tube display, indicator lights, and buttons. The digital tube is used to display operating status and parameter information, while the indicator lights indicate the current working status, such as running, forward rotation, reverse rotation, etc. The button section includes commonly used function buttons such as run, stop, and fault reset, as well as direction buttons and a confirmation button for parameter setting.

Password Setting and Elimination

To prevent unauthorized parameter modifications, the LSLV-M100 series inverter provides a password protection function. The specific steps for setting a password are as follows:

  • Enter the configuration function group: First, access the configuration function group (typically identified by P700 series codes) through the panel operations.
  • Select the password registration parameter: Within the configuration function group, locate the password registration parameter (e.g., P701).
  • Enter the password: Use the panel’s direction buttons and confirmation button to input the password, which must consist of 1 to 16 hexadecimal characters.
  • Save the settings: After inputting, press the confirmation button to save the settings.

The method for eliminating the password is similar to setting it. Simply change the password in the password registration parameter to the initial password (usually 0000) or leave it blank.

Front image of LSLV-M100

Parameter Locking

In addition to password protection, the LSLV-M100 series inverter also offers a parameter locking function. By locking the parameters, unintentional changes can be prevented. The specific steps are as follows:

  • Enter the configuration function group: Same as for setting the password, first access the configuration function group.
  • Select the parameter locking parameter: Locate the parameter locking parameter (e.g., P702).
  • Lock the parameters: Set the parameter locking parameter to 1 to lock all settable parameters.
  • Unlock the parameters: When needing to modify parameters, set the parameter locking parameter to 0 and enter the password to unlock.

II. Forward/Reverse Control via Terminals and Speed Adjustment with External Potentiometer

Forward/Reverse Control via Terminals

The LSLV-M100 series inverter supports forward/reverse control through multifunction input terminals. The specific wiring and settings are as follows:

  • Wiring: Connect the forward control signal to a multifunction input terminal (e.g., IN1) and the reverse control signal to another multifunction input terminal (e.g., IN2).
  • Parameter settings:
    • Enter the input terminal function group (e.g., P300 series).
    • Set the forward control terminal function (e.g., P301) to 1 (forward rotation).
    • Set the reverse control terminal function (e.g., P302) to 2 (reverse rotation).
    • In the operation group (e.g., P000 series), set the run command source to external terminals.
LSLV-M100 standard wiring diagram

Speed Adjustment with External Potentiometer

External potentiometer speed adjustment is a commonly used method, where the output frequency of the inverter is changed by adjusting the resistance of the external potentiometer. The specific wiring and settings are as follows:

  • Wiring: Connect the two ends of the external potentiometer to the analog input terminals of the inverter (e.g., V1 and GND).
  • Parameter settings:
    • Enter the input terminal function group.
    • Set the analog input terminal function to voltage input (e.g., set P310 to 1 for voltage input).
    • In the operation group, set the frequency setting method to analog input (e.g., set P003 to 2 for analog voltage input).

III. Fault Codes and Solutions

The LSLV-M100 series inverter features a comprehensive fault code display function, helping users quickly identify fault causes. Below are some common fault codes, their meanings, and solutions:

  • OC (Overcurrent): Indicates that the inverter’s output current exceeds the rated value. Possible causes include excessive load, motor stall, etc. Solutions include checking the load condition and adjusting the acceleration/deceleration time.
  • OV (Overvoltage): Indicates that the DC bus voltage of the inverter is too high. Possible causes include excessive input voltage and faulty braking resistor. Solutions include adjusting the input voltage and checking the braking resistor.
  • UV (Undervoltage): Indicates that the input voltage of the inverter is too low. Possible causes include unstable power supply voltage and phase loss in the input power supply. Solutions include checking the power supply voltage and the input power lines.
  • OH (Overheat): Indicates that the temperature of the inverter’s heatsink is too high. Possible causes include high ambient temperature and faulty cooling fan. Solutions include reducing the ambient temperature and replacing the cooling fan.

For the above faults, users can follow the fault troubleshooting process outlined in the manual to identify and resolve issues one by one based on the inverter’s fault code prompts.

Side image of LSLV-M100

IV. Conclusion

As a high-performance variable frequency speed control device, the LSLV-M100 series inverter provides a detailed operation guide and fault troubleshooting methods in its user manual. By familiarizing themselves with the functions of the operation panel, mastering password setting and locking, understanding the wiring and settings for forward/reverse control via terminals and speed adjustment with an external potentiometer, and grasping the solutions to common fault codes, users can operate and maintain the inverter more efficiently, ensuring its stable operation and optimal performance.

Posted on Leave a comment

Meaning and Troubleshooting of ID-14 Error in Hitachi X-MET8000 Spectrometer

Introduction

The X-MET8000 is a portable spectrometer developed by Hitachi, widely used in industrial fields such as metal composition analysis and material testing. Its core technology relies on the collaboration between the X-ray emission and reception system and the sample sensor to achieve precise analysis. However, users may encounter the ID-14 error, which indicates “Sample proximity sensor not detected, measurement stopped.” This issue not only affects work efficiency but may also cause damage to the device or inaccurate measurements. This article delves into the causes of the ID-14 error and provides detailed solutions based on practical repair experience.


ID:14 ERROR

1. The Meaning of ID-14 Error

The key to the ID-14 error lies in the message “Sample proximity sensor not detected.” Essentially, the detection system of the spectrometer cannot confirm whether the sample is properly placed. This is usually caused by the following three factors:

  1. Failure of the sample sensing system: The spectrometer uses an infrared sensor to detect whether the sample is in contact with the measurement window. A failure in this system may lead to detection errors.
  2. Issues with sample placement: If the sample does not completely cover the measurement window, has an uneven surface, or is unsuitable for measurement, this error will occur.
  3. Internal hardware or circuit issues: This includes failures in the infrared sensor, connecting circuits, or signal processing modules.

X-MET8000

2. Causes of the Error

Based on repair experience and the working principle of the device, the specific causes of the ID-14 error include:

1. Improper Sample Placement
  • The sample does not fully cover the measurement window.
  • The sample surface contains oil, oxide layers, or other obstructions, blocking the infrared signal.
  • The sample has an irregular shape (e.g., curved or uneven), making it difficult to contact the sensor tightly.
2. Infrared Sensor Issues

The infrared sensor is a key component related to the ID-14 error, with potential issues including:

  • Damage to the infrared emitter or receiver: The emitter cannot emit infrared signals, or the receiver cannot capture the reflected signals.
  • Cold solder joints: Prolonged use may lead to loose or broken solder joints between the sensing module and the FPC (flexible printed circuit).
  • Contamination or aging: Pollution on the sensor surface or aging components may weaken or disable the signal.
3. Circuit Connection Failures
  • FPC damage: The flexible circuit board connecting the sensing module to the mainboard may break due to bending, pulling, or prolonged use.
  • Connector issues: The FPC connector to the mainboard may not be tightly connected, or the contacts may be oxidized.
4. Control Circuit Issues
  • Infrared signal processing chip failure, preventing proper signal transmission.
  • Other related circuits on the mainboard (e.g., power supply modules) may malfunction, affecting the infrared module’s operation.

Scanning head

3. Solutions

Based on the above analysis, repair steps can be divided into the following aspects:

1. Checking the Sample

Before disassembling the device or performing more complex repairs, inspect the sample:

  • Clean the sample surface: Use isopropyl alcohol to clean the sample surface to remove oil, oxide layers, or dust.
  • Reposition the sample: Ensure the sample fully covers the measurement window and is in close contact with the sensor.
  • Replace the sample: If the sample surface is too rough or irregular, choose another sample for testing to rule out sample-related factors.
Infrared sensing sensor
2. Repairing the Sensor Module

If the sample is confirmed to be fine, focus on the sensor module:

  • Clean the infrared sensor: Use a lint-free cloth and isopropyl alcohol to clean the emitter and receiver surfaces, removing dust or stains.
  • Test the infrared emitter and receiver:
    • Use a multimeter to measure whether the emitter and receiver output signals.
    • Use an infrared camera or night vision device to check if the infrared emitter is emitting light (usually at 850nm or 950nm wavelengths).
  • Replace damaged sensor modules: If the sensor is confirmed to be faulty, replace it with a module of the same model.
3. Repairing Circuit Connections
  • Inspect the FPC:
    • Use a multimeter to measure whether all lines on the FPC are continuous.
    • If a break is found, repair it with fine wires or replace the entire FPC.
  • Repair solder joints:
    • Use a hot air rework station or a fine-tip soldering iron to re-solder the sensor module. Keep the soldering temperature between 280–320°C.
    • If the solder joints are aged or loose, remove the old solder and reapply fresh solder.
  • Check the connectors: Clean the connector contacts between the FPC and the mainboard. Replace the connector if necessary.
4. Checking the Mainboard and Control Circuits
  • Use an oscilloscope to check whether the signal processing chip on the mainboard is functioning correctly.
  • If the mainboard is faulty, contact the manufacturer for replacement or repair.

Infrared sensor head

4. Repair Precautions

  1. Safety First:
    • The X-MET8000 involves X-ray technology. Ensure the device is completely powered off before operation, and avoid contact with high-voltage parts.
    • Do not operate the X-ray system without proper safety measures.
  2. Tool Preparation:
    • Prepare tools such as a hot air rework station, multimeter, isopropyl alcohol, lint-free cloth, tweezers, etc.
    • Use a microscope if possible to assist with observation and soldering.
  3. Avoid Misoperation:
    • During repairs, avoid damaging surrounding components or circuits.
    • If you lack repair experience, consider handing the device over to professional technicians.

5. Conclusion

The ID-14 error is a common issue in Hitachi’s X-MET8000 spectrometer, usually caused by failures in the sample sensor or related circuits. Through systematic troubleshooting and repair methods, this issue can be effectively resolved, restoring the device to normal operation. This article combines practical repair cases to analyze the issue from four aspects: sample inspection, sensor module, circuit connection, and mainboard circuits, providing a clear troubleshooting framework for repair technicians.

In practice, repair personnel should flexibly adjust steps according to specific circumstances and ensure safety precautions are in place. If the issue persists, it is recommended to contact the manufacturer’s technical support for further assistance.

Posted on Leave a comment

User Manual and Operation Guide for Danfoss VLT® HVAC Basic Drive FC 101 Series

Table of Contents

  1. Panel Start, Stop, and Frequency Speed Adjustment
    • Panel Start and Stop Operation
    • Panel Frequency Speed Adjustment Settings
    • Manual Adjustment of Voltage/Frequency Ratio Parameters
    • Inverter Initialization Procedure
    • Password and Parameter Access Restriction Settings
  2. Terminal Forward/Reverse Control and External Potentiometer Speed Adjustment
    • Terminal Forward/Reverse Control Settings
    • External Potentiometer Frequency Speed Adjustment Settings
    • Explanation of Required Terminal Connections
  3. Fault Codes and Troubleshooting
    • List of Common Fault Codes
    • Fault Meanings Analysis
    • Troubleshooting Methods

Front view of FC-101

1. Panel Start, Stop, and Frequency Speed Adjustment

Panel Start and Stop Operation

The Danfoss FC 101 series inverter can be started and stopped via the Local Control Panel (LCP). The specific operations are as follows:

  • Start: Press the “[Hand On]” key on the LCP to start the motor.
  • Stop: Press the “[Off/Reset]” key on the LCP to stop the motor. This key can also be used to reset alarms in alarm mode.

Panel Frequency Speed Adjustment Settings

To achieve panel-based frequency speed adjustment, the following parameters need to be set:

  • 3-02 Minimum Reference Value: Sets the minimum allowable frequency reference value.
  • 3-03 Maximum Reference Value: Sets the maximum allowable frequency reference value.
  • 3-10 Preset Reference Value: Used to set one or more preset frequency reference values, selected via keys on the LCP.
FC-101 Side View

Manual Adjustment of Voltage/Frequency Ratio Parameters

To manually adjust the voltage/frequency (V/F) ratio curve, the following parameters need to be set:

  • 1-01 Motor Control Principle: Select [0] U/f control.
  • 1-55 U/f Characteristic – U: Set corresponding voltage values for different frequency points.
  • 1-56 U/f Characteristic – F: Define the frequency points in the V/F characteristic curve.

Inverter Initialization Procedure

Initializing the inverter restores its parameters to default settings. There are two initialization methods:

  • Recommended Initialization:
    1. Select parameter 14-22 Operation Mode.
    2. Press the [OK] key, select [2] Initialize, and then press the [OK] key again.
    3. Disconnect the inverter power supply and wait for the display to turn off.
    4. Reconnect the main power supply.
  • Two-Finger Initialization:
    1. Disconnect the inverter power supply.
    2. Simultaneously press and hold the [OK] and [Menu] keys.
    3. Hold the keys for 10 seconds while powering on the inverter.

Password and Parameter Access Restriction Settings

  • 0-60 Main Menu Password: Defines the password for accessing the main menu.
  • 0-61 Extended Menu No Password: Choose between full access, read-only, or no access.

2. Terminal Forward/Reverse Control and External Potentiometer Speed Adjustment

Terminal Forward/Reverse Control Settings

To achieve terminal-based forward/reverse control, the following parameters need to be set:

  • 4-10 Motor Speed Direction: Select [2] Bidirectional to allow both clockwise and counterclockwise rotation.
  • 5-10 Terminal 18 Digital Input: Set to [10] Reverse to control motor reversal.
FC101 standard wiring diagram

External Potentiometer Frequency Speed Adjustment Settings

To achieve external potentiometer-based frequency speed adjustment, the following parameters need to be set, and terminal 53 (analog input) needs to be connected:

  • 3-15 Reference Source 1: Select [1] Analog Input 53.
  • 6-00 Disconnect Timeout Time: Set the timeout time for analog input disconnection.
  • 6-01 Disconnect Timeout Function: Select the function when disconnected, such as lock output or stop.

Explanation of Required Terminal Connections

  • Terminal 18: Connect the digital input signal for reverse control.
  • Terminal 53: Connect the external potentiometer for frequency speed adjustment.
  • Terminal 27: Typically used for start/stop control, specific function needs to be set in parameters.

3. Fault Codes and Troubleshooting

List of Common Fault Codes

  • Alarm 2: Disconnect Fault
  • Alarm 3: No Motor Connected
  • Alarm 4: Main Supply Phase Loss
  • Alarm 13: Overcurrent
  • Alarm 14: Earth Fault
  • Alarm 24: Fan Fault
  • Alarm 30: Motor Phase U Loss
  • Alarm 95: Broken Belt

Fault Meanings Analysis

  • Disconnect Fault: Analog input signal is below the set value.
  • No Motor Connected: No motor is connected to the inverter output terminals.
  • Main Supply Phase Loss: Main power supply has missing phases or unstable voltage.
  • Overcurrent: Motor current exceeds the inverter peak current limit.
  • Earth Fault: Output phase is discharged to earth through motor cables or the motor itself.
  • Fan Fault: Fan is not running or not installed.
  • Motor Phase Loss: One phase is missing between the motor and the inverter.
  • Broken Belt: Torque is below the set value, indicating a possible broken belt.

Troubleshooting Methods

  • Disconnect Fault: Check analog input terminal connections and signal source.
  • No Motor Connected: Check motor connections to the inverter.
  • Main Supply Phase Loss: Check main power supply and voltage stability.
  • Overcurrent: Check motor load and parameter settings to ensure motor compatibility.
  • Earth Fault: Check motor cable and grounding connections.
  • Fan Fault: Check fan resistance and operation.
  • Motor Phase Loss: Check motor connections and cables.
  • Broken Belt: Check the drive system and belt condition.

By following the above settings and troubleshooting methods, users can effectively operate and maintain the Danfoss FC 101 series inverter, ensuring its stable operation and meeting application requirements.

Posted on Leave a comment

User Manual Operation Guide for Inovance GD270 Series Inverter

I. Introduction to Inverter Operation Panel Functions and Parameter Initialization

The Inovance GD270 series inverter is an efficient drive specifically designed for fan and pump applications. Its operation panel features a rich set of functions, facilitating user operation and monitoring. The operation panel mainly includes an LED keyboard for displaying the inverter’s operating status, set frequency, and other parameters, as well as for parameter settings and operational control.

Front image of GD270

Parameter Initialization:

  1. Press the PRG/ESC button to enter the parameter setting group.
  2. Use the up and down buttons to select the parameter group or parameter that needs to be initialized.
  3. Press the DATA/ENT button to enter the next level menu for specific parameter settings.
  4. Set the parameters that need to be initialized to their factory defaults or desired values.
  5. After completing the settings, press the PRG/ESC button to return to the initial interface and save the settings.

Setting Password and Parameter Access Restrictions:

  1. Press the PRG/ESC button to enter the parameter setting group, and use the up and down buttons to navigate to the P07 Human-Machine Interface group.
  2. Press the DATA/ENT button to enter the next level menu, and use the up and down buttons to navigate to P07.00 User Password (if it’s already set, it doesn’t need adjustment).
  3. Press the DATA/ENT button to enter the parameter, and use the SHIFT button to shift and set the password (e.g., 02021). Press DATA/ENT to confirm.
  4. Press the PRG/ESC button twice to return to the initial interface, and wait for 1 minute for the password to take effect.
  5. Afterward, when pressing the PRG/ESC button to enter the parameter settings again, the user will need to input the previously set password.
  6. To cancel the password, follow the same steps to enter the P07.00 parameter, set the password to 0, and press DATA/ENT.
Side view of GD270

Using Fire Crossing Control Function:

The GD270 series inverter supports a fire crossing control function, which can ensure that the inverter continues to operate for a period of time in case of a fire or other emergencies, allowing for safe shutdown or other emergency measures. The specific setup method requires referring to the inverter’s advanced function settings manual and configuring according to actual conditions.

II. Terminal Forward/Reverse Control and External Potentiometer Frequency Speed Regulation

Terminal Forward/Reverse Control:

  1. Wiring: Connect the multi-function input terminals (such as forward and reverse terminals) to the control signal source (such as buttons, relay outputs, etc.).
  2. Parameter Settings:
    • Enter the parameter setting group and select the control command channel (such as P00.00), setting it to the terminal command channel.
    • Set the corresponding function codes for forward and reverse (such as P00.01, P00.02), corresponding to the forward and reverse terminals, respectively.

External Potentiometer Frequency Speed Regulation:

  1. Wiring: Connect the output terminal (V terminal) of the potentiometer to the analog voltage input terminal of the inverter (such as AI1), and connect the common terminal (GND terminal) of the potentiometer to the common ground terminal of the inverter.
  2. Parameter Settings:
    • Enter the parameter setting group and select the frequency setting selection (such as P01.00), setting it to external terminal given.
    • Set the parameters corresponding to the analog voltage input (such as P01.01), selecting the AI1 terminal.
    • Adjust other relevant parameters as needed, such as the analog voltage input range and frequency upper limit.
GD270标准配线图

III. Fault Codes and Handling Methods

The GD270 series inverter’s fault code system is quite comprehensive, covering numerous potential issues. The following lists some common fault codes, their meanings, and handling methods:

  1. OL (Overload): Indicates that the inverter’s output current exceeds the rated current. Handling methods include checking if the load is too heavy, if the motor is jammed, if the parameter settings are reasonable, etc.
  2. E7 (Encoder Signal Loss): Indicates that the inverter has not received an encoder signal. Handling methods include checking if the encoder connection is good, if the encoder is damaged, etc.
  3. E8 (Fan Fault): Indicates that the inverter’s internal fan has failed. Handling methods include checking if the fan is operating normally, if the fan connection is good, etc.
  4. OC (Overcurrent): Indicates that the inverter’s output current exceeds the allowable value. Handling methods include checking if the load is too heavy, if the motor is jammed, if the power supply voltage is too high or too low, etc.

For other fault codes not explicitly stated, such as 5P1, further technical support or detailed user manuals may be required for interpretation. When handling faults, it is essential to understand the inverter’s various parameter settings and operating status to accurately diagnose the fault cause and take appropriate measures.

IV. Conclusion

The Inovance GD270 series inverter is a powerful and easy-to-operate product. Through this guide, users can better understand the inverter’s operation panel functions, parameter setting methods, terminal wiring and parameter configuration, as well as fault code handling and other aspects. In practical applications, users should choose appropriate control methods, parameter settings, and fault handling methods based on specific conditions to ensure the inverter’s normal operation and efficient energy saving. At the same time, it is recommended that users regularly consult the inverter’s user manual and related technical documents to obtain the latest product information and technical support.

Posted on Leave a comment

HOLIP Inverter HLP-A Series User Manual Operation Guide

I. Introduction to Operation Panel Functions and Parameter Settings

HLP-A Front View

The HOLIP Inverter HLP-A series boasts a comprehensive operation panel that allows users to perform parameter settings, monitor operating status, and diagnose faults. The operation panel primarily includes a display screen, directional keys, set keys, run keys, stop keys, and other functional keys.

Setting and Resetting Passwords

To protect against unauthorized modification of inverter parameters, the HLP-A series supports password protection. Users can enable password protection by setting parameter CD010 to 1, at which point all parameters except CD010 become unmodifiable. To reset the password, simply set CD010 back to 0.

Locking Parameters

To prevent non-maintenance personnel from accidentally modifying parameters, users can lock all parameters except CD010 by setting CD010 to 1. Once locked, only the correct password (set through parameter CD011) can unlock the parameters for modification.

HLP-A Side View

Initializing Parameters

When it is necessary to restore the inverter to its factory settings, users can set parameter CD011 to 08 and then press the run and stop keys simultaneously. The inverter will automatically restart and revert to its factory settings.

II. Terminal Forward/Reverse Control and External Potentiometer Frequency Adjustment

Terminal Forward/Reverse Control

HLP-A Operation Panel Function Diagram

The HLP-A series inverter supports forward/reverse control via external terminals. Users need to set the multi-function input terminal FOR to forward (parameter CD050=02) and REV to reverse (parameter CD051=03). Then, by controlling the on/off state of these terminals with external switches, motor forward/reverse control can be achieved.

External Potentiometer Frequency Adjustment

External potentiometer speed control is a commonly used method for variable frequency speed control. Users need to set the inverter’s operation command source to external terminals (parameter CD033=1) and the operation frequency source to external analog (parameter CD034=1). Connect the potentiometer’s center tap to the VI terminal and its ends to the +10V and ACM terminals, respectively. By adjusting the potentiometer’s resistance, the inverter’s output frequency can be changed, thereby achieving motor speed control.

HLP-A Basic Wiring Diagram

III. Fault Codes and Solutions

The HLP-A series inverter features comprehensive fault protection functions. When a fault occurs, the inverter will display the corresponding fault code. Below are some common fault codes, their meanings, and solutions:

E.OC.A (Overcurrent During Acceleration)

Meaning: The inverter experiences overcurrent during acceleration.

Solution: Check for short circuits or partial short circuits in the motor, and ensure good insulation of output wires; extend the acceleration time; check the inverter configuration for reasonableness and increase the inverter capacity if necessary; reduce the torque boost setting.

E.GF.S (Ground Fault)

Meaning: The inverter output is short-circuited to ground.

Solution: Check for short circuits in motor connections and ensure good insulation of output wires; if the fault cannot be resolved, contact the manufacturer for repair.

E.OU.S (Overvoltage During Stopping)

Meaning: The inverter experiences overvoltage during stopping.

Solution: Extend the deceleration time or install a braking resistor; improve the grid voltage quality and check for sudden voltage fluctuations.

E.OL.A (Inverter Overload)

Meaning: The inverter is overloaded.

Solution: Check if the inverter capacity is too small and increase it if necessary; check for stuck mechanical loads; reset the V/F curve.

E.OT.A (Motor Overtorque)

Meaning: The motor experiences overtorque.

Solution: Check for fluctuations in mechanical loads; check if the motor configuration is too small; check for deterioration in motor insulation due to overheating; check for significant voltage fluctuations; check for phase loss; check for increased mechanical loads.

IV. Conclusion

The HOLIP Inverter HLP-A series user manual provides users with detailed operation guides and fault solutions. By understanding the operation panel functions, mastering terminal control and potentiometer speed adjustment methods, and being familiar with fault code meanings and solutions, users can better utilize and maintain the inverter, ensuring its stable operation and extended service life. In practical applications, users should strictly follow the instructions in the manual for operation and maintenance to ensure the performance and safety of the inverter.