Posted on Leave a comment

Danfoss VLT® AutomationDrive FC 360 Series User Manual Operation Guide

The Danfoss VLT® AutomationDrive FC 360 series is a powerful and versatile frequency converter suitable for a wide range of industrial control applications. This article will provide a detailed operation guide for this series of frequency converters, covering the control panel functions, parameter operations, terminal control, and fault code handling.

I. Control Panel Function Introduction

The Danfoss VLT® AutomationDrive FC 360 series offers two types of control panels: the Numeric Local Control Panel (NLCP) and the Graphical Local Control Panel (GLCP), to meet the needs of different users.

1.1 Basic Control Panel Operations

  • Numeric Local Control Panel (NLCP):
    • Display: Shows current operating parameters and status.
    • Menu Key: Switches between status menu, quick menu, and main menu.
    • Navigation Keys and Indicators: Used for parameter selection and value adjustment, with indicators showing the converter status.
    • Operation Keys: Including [Hand On], [Auto On], [Reset], etc., for manual start, automatic start, and reset operations.
  • Graphical Local Control Panel (GLCP):
    • Similar functions to NLCP but with a larger display for richer information and multi-language support.

1.2 Parameter Copying and Restoration

  • Parameter Copying:
    1. Upload parameters from Converter A to the control panel: On Converter A, enter the main menu, select “LCP Copy” function, and upload parameters to LCP.
    2. Download parameters from the control panel to Converter B: On Converter B, enter the main menu, select “LCP Copy” function, and download parameters from LCP to the converter.
  • Parameter Initialization:
    Enter the main menu, select the “Operating Mode” parameter, set it to “Initialize” and execute, or reset parameters to factory defaults.
  • Encryption and Parameter Level Settings:
    Protect parameters from unauthorized changes by setting a password (parameter 0-60). Additionally, parameters 0-10 and 0-11 can be used to set the validity and editing permissions of different menus.
  • Compressor Control Parameter Settings:
    Adjust startup parameters (e.g., 1-75 Startup Speed, 1-76 Startup Current), stop parameters (e.g., 1-80 Stop Function), and acceleration/deceleration times (e.g., 3-41 Ramp 1 Acceleration Time) according to compressor application requirements.

II. Terminal Forward/Reverse Control and External 4-20mA Frequency Setting

2.1 Forward/Reverse Control

  • Wiring:
    • Forward Control: Connect the control signal to terminal 18 (Digital Input [8] Start).
    • Reverse Control: Connect the control signal to terminal 19 (Digital Input [10] Reverse).
  • Parameter Settings:
    • Enter the Digital Input parameter group (5-1*), and set the functions of terminals 18 and 19 to start and reverse, respectively.

2.2 External 4-20mA Frequency Setting

  • Wiring:
    • Connect the external 4-20mA signal to terminal 53 or 54 (depending on the analog input configuration).
  • Parameter Settings:
    1. Enter the Analog Input parameter group (6-1* or 6-2*), and configure terminal 53 or 54 as a current input mode.
    2. Set the minimum and maximum values for the analog input (e.g., 6-10 Terminal 53 Low Voltage, 6-11 Terminal 53 High Voltage), as well as the corresponding feedback or reference value.
    3. In the Reference parameter group (3-1*), select the external analog input as one of the reference sources.

III. Fault Code Handling

The Danfoss VLT® AutomationDrive FC 360 series provides extensive fault codes to help users quickly locate and resolve issues.

  • Common Fault Codes and Meanings:
    • Alarm 14: Earth Fault: Output phase is discharging to earth through the cable between the motor and the converter or the motor itself.
    • Alarm 16: Short Circuit: Short circuit occurs in the motor or motor circuit.
    • Alarm 30: Motor Phase U Missing: Motor U phase is missing between the converter and the motor.
    • Alarm 61: Feedback Error: Deviation exists between the calculated speed and the speed measurement value from the feedback device.
  • Fault Handling:
    • Refer to the fault diagnosis section in the user manual based on the fault code, check the corresponding circuit connections, motor status, and parameter settings.
    • After resolving the fault, perform a reset operation through the control panel or an external reset signal to restore normal operation of the converter.

IV. Conclusion

The Danfoss VLT® AutomationDrive FC 360 series user manual provides a comprehensive operation guide, covering control panel functions, parameter operations, terminal control, and fault code handling. By mastering these operation guides, users can better use and maintain the frequency converter, ensuring its stable and reliable operation in various industrial control scenarios. In practical applications, users should also flexibly adjust parameter settings and control strategies based on specific application requirements and field environments to achieve optimal control effects.

Posted on Leave a comment

VACON NX Inverter Series User Manual Guide

I. How to Achieve Forward/Reverse Rotation and Speed Control via External Terminals

The VACON NX series of frequency converters allows for straightforward forward/reverse rotation and speed control via external terminals. Here’s how to achieve this:

Application diagram of VACON inverter NX series control IO
  1. Terminal Connections:
    • Forward/Reverse Control:
      • Forward rotation is typically connected to the DI1 (forward start) terminal of the frequency converter.
      • Reverse rotation is typically connected to the DI2 (reverse start) terminal.
      • Note that different NX series models may have different terminal numbers; refer to the specific model’s user manual for confirmation.
    • Potentiometer Speed Control:
      • Connect the three terminals of the potentiometer to the AI1 (analog input 1), GND (ground), and +10V (analog input positive power) terminals of the frequency converter, respectively.
  2. Parameter Settings:
    • Forward/Reverse Parameters:
      • Set the control source to external terminal control and ensure that the DI1 and DI2 functions are correctly configured for forward and reverse rotation.
    • Potentiometer Speed Control Parameters:
      • Set AI1 as the frequency reference source.
      • Adjust the input range of AI1 as needed to ensure that the potentiometer’s output range matches the frequency converter’s frequency range.
VACON inverter NX series PID control IO wiring diagram

II. Characteristics of PID Function and Its Application in Constant Pressure Control of Water Pumps

The PID function of the VACON NX series frequency converter is highly capable and suitable for various automatic control applications. Here are its key features and how to apply it to constant pressure control of water pumps:

  1. PID Function Characteristics:
    • Supports multiple PID control modes, including standard PID and sleep/wake-up functions.
    • Flexible PID parameter configuration via external terminals or fieldbus.
    • Provides comprehensive monitoring and alarm functions to ensure stable system operation.
  2. Application in Water Pump Constant Pressure Control:
    • Terminal Connections:
      • Connect the output signal of the pressure sensor to the AI1 (analog input 1) terminal of the frequency converter.
      • Connect other control terminals as needed, such as start and stop.
    • Parameter Settings:
      • Set AI1 as the actual value input for PID control.
      • Configure the reference value for the PID controller (target pressure value).
      • Adjust the PID parameters (proportional, integral, derivative) to achieve optimal control performance.
      • Set the sleep/wake-up function as needed to save energy.

III. Fieldbus Protocol and Communication with Siemens PLC

The VACON NX series supports multiple fieldbus protocols, including Profibus, Modbus, etc., facilitating communication with various PLCs. Here’s how to set up communication with a Siemens PLC:

  1. Fieldbus Protocol:
    • The NX series supports multiple fieldbus protocols; users can select the appropriate protocol based on actual needs.
  2. Communication with Siemens PLC:
    • Wiring:
      • Connect the frequency converter’s fieldbus interface to the corresponding interface of the Siemens PLC using a dedicated fieldbus communication cable.
    • Parameter Settings:
      • Configure fieldbus parameters in the frequency converter, including station address, baud rate, etc.
      • Configure corresponding communication parameters in the Siemens PLC to ensure compatibility with the frequency converter.
      • Program the PLC to send start, stop, and speed adjustment commands to the frequency converter via the fieldbus.

IV. Fault Code Meaning Analysis and Troubleshooting

The VACON NX series provides comprehensive fault codes to help users quickly locate and resolve issues. Here are some common fault codes, their meanings, and troubleshooting methods:

  1. F1: Overcurrent Fault
    • Meaning: The output current of the frequency converter exceeds the set value.
    • Troubleshooting: Check for motor overload, cable short circuits, and correct frequency converter parameter settings.
  2. F2: Overvoltage Fault
    • Meaning: The DC bus voltage of the frequency converter is too high.
    • Troubleshooting: Check for stable input voltage and proper operation of the braking resistor.
  3. F5: Charging Switch Fault
    • Meaning: The internal charging switch of the frequency converter is abnormal.
    • Troubleshooting: Check the charging switch and related circuits for proper functioning.

V. Conclusion

The VACON NX series user manual provides detailed usage guides and parameter setting instructions, helping users quickly get started and implement various complex control functions. Through this guide, users should now have a comprehensive understanding of how to achieve forward/reverse rotation and speed control via external terminals, the characteristics and application of the PID function, fieldbus protocol and communication with Siemens PLC, as well as the meanings and troubleshooting methods of fault codes. In practical applications, users should flexibly configure parameters and wiring based on specific needs and site conditions to achieve optimal control performance.

Posted on Leave a comment

User Guide for Danfoss VLT2800 Frequency Converter


Danfoss VLT2800 Frequency Converter User Guide

1. Introduction to the Operation Panel

The operation panel of the Danfoss VLT2800 frequency converter is designed to be simple and user-friendly, allowing users to control basic functions and adjust parameters. The key components of the panel are:

  1. Display Screen: Shows current status, parameter values, fault codes, etc.
  2. Navigation Keys: Used to navigate between menus and parameters, including arrow keys for up, down, left, and right.
  3. Operation Keys: Includes keys for start, stop, reset, and other control functions for easy operation.
  4. Quick Menu Key: Provides quick access to commonly used menus and parameters.
  5. Change Data Keys: These keys allow users to modify displayed parameters and adjust the operating status of the converter.

With these buttons, users can perform parameter settings, switch operating modes, and monitor the running status of the frequency converter in real-time.

VLT2800 Multi Panel Function Diagram

2. Parameter Initialization and Adjustment

When using the VLT2800 frequency converter for the first time or when restoring factory settings, follow these steps for parameter initialization and adjustment:

  1. Restoring Factory Settings:
  • Enter the main menu and select the “Restore Factory Settings” option. The frequency converter will reset all user settings to default parameters.
  1. Motor Parameter Settings:
    Configure the motor parameters through parameter group 102-106:
  • 102: Motor Power (PM,N): Set the motor’s rated power.
  • 103: Motor Voltage (UM,N): Set the motor’s rated voltage.
  • 104: Motor Frequency (fM,N): Set the motor’s rated working frequency.
  • 105: Motor Current (IM,N): Set the motor’s rated current.
  • 106: Motor Speed (nM,N): Set the motor’s rated speed.
  1. Speed Control Mode:
  • Choose between open-loop or closed-loop speed control to ensure precise control based on application requirements.
VLT2800 Control Circuit Wiring Diagram

3. Start/Stop Function and External Potentiometer Adjustment

1. Start and Stop Functions via Terminals

The Danfoss VLT2800 frequency converter can be started and stopped using terminal connections. Follow these steps for terminal wiring:

  • Start Signal: Connect the start signal to terminals 12 (START) and GND. The converter will start the motor according to the set parameters once the signal is received.
  • Stop Signal: Connect the stop signal to terminals 13 (STOP) and GND. The motor will decelerate and stop as per the set deceleration time when the stop signal is triggered.
  • Reset Function: Connect an external reset signal to terminal 16 (RESET) to reset the converter when needed.
2. External Potentiometer for Speed Adjustment

To adjust the output frequency using an external potentiometer, follow these wiring steps:

  • Potentiometer Wiring:
  • Connect the positive terminal of the potentiometer to terminal 55 (+10V output), the negative terminal to terminal 53 (analog input), and ground to GND.
  • Parameter Settings:
  1. In parameter group 300, set the analog input type and configure terminal 53 to be controlled by the external potentiometer.
  2. Adjust parameters 204 (RefMIN) and 205 (RefMAX) to set the minimum and maximum reference values corresponding to the potentiometer.

By adjusting the potentiometer, the frequency converter’s output frequency can be dynamically controlled, allowing for smooth linear speed regulation from minimum to maximum.

4. Fault Code Analysis and Troubleshooting

The VLT2800 frequency converter features a self-diagnostic function. If a fault occurs during operation, the relevant fault code will be displayed on the control panel. Below are some common fault codes and their solutions:

  1. E1: Overcurrent Protection
  • Cause: Fast motor acceleration, excessive load, or motor short circuit.
  • Solution: Check motor wiring, reduce load, or extend the acceleration time.
  1. E2: Overvoltage Protection
  • Cause: Power supply voltage too high or large voltage fluctuations.
  • Solution: Check if the power supply voltage is within the specified range, and use a voltage stabilizer if necessary.
  1. E3: Undervoltage Protection
  • Cause: Power supply voltage too low or a sudden voltage drop.
  • Solution: Ensure stable power supply and check voltage levels.
  1. E4: Overheating Protection
  • Cause: Poor heat dissipation or high ambient temperature.
  • Solution: Check the cooling system of the converter, ensure the fan is working properly, and reduce the environmental temperature or improve ventilation if needed.
  1. E14: Communication Failure
  • Cause: Communication line fault or loss of communication between the controller and the converter.
  • Solution: Inspect communication cable connections and reconfigure communication parameters.

By setting the correct parameters, ensuring proper wiring, and accurately identifying fault codes, users can ensure the stable operation of the Danfoss VLT2800 frequency converter and troubleshoot issues as they arise.


This guide provides users with a comprehensive overview of the VLT2800 frequency converter, covering panel operation, parameter setup, terminal functions, and troubleshooting to help them get started and maintain smooth operation of the device.