Posted on Leave a comment

​User Guide for Fuling VFD BD330 Series Manual

Operation Panel Key Descriptions:

Functional description of Fuling inverter BD330 operation panel
  • PRGM/ESC: Program setting and exit key. PRGM is used to enter programming mode or set parameters, while ESC is used to exit the current setting or return to the previous menu.
  • FUNCTION/DATA: Function selection and data key. FUNCTION is used to enter the function selection interface, and DATA is used to modify data values during parameter setting.
  • FORWARD/REVERSE: Forward and reverse control key. Controls the forward or reverse rotation of the motor.
  • JOG/>>: Jog and page turning key. JOG is used for jog control, and >> may be used for page turning or increasing parameter values (specific functions may vary depending on the model).
  • RUN: Run key. Controls the startup of the VFD.
  • STOP/RST: Stop and reset key. STOP is used to stop the VFD operation, and RST is used to reset the VFD and clear fault states.
  • UP/DOWN: Up and down adjustment key. Used to increase or decrease values during parameter setting.

Terminal Start/Stop and Potentiometer Debugging Wiring Instructions:

Terminal Start/Stop:

  • Parameter Setting: Ensure parameter F0.02 is set to 1, selecting terminal control mode.
  • Wiring Instructions:
    • Connect the external start signal to the S1 terminal of the VFD.
    • Short-circuit the S1 terminal with the common terminal DCM to send a start signal, causing the VFD to begin operation.
    • Disconnect the short-circuit between S1 and DCM to send a stop signal, causing the VFD to stop operation.

Potentiometer Debugging:

  • Parameter Setting: Ensure parameter F0.03 is set to 1, selecting external potentiometer speed adjustment mode.
  • Wiring Instructions:
    • Connect the center tap (sliding contact) of the potentiometer to the AVI terminal of the VFD.
    • Connect the two ends of the potentiometer to the 10V (or similar positive power supply) and ACM (or similar common terminal) of the VFD, respectively.
    • Adjust the position of the potentiometer to change the voltage value of the AVI terminal, thereby controlling the output frequency of the VFD.
Fuling inverter BD330 wiring diagram

Fault Code Analysis and Solutions:

Fault Codes:

  • E001: DC bus fault. Possible causes include abnormal input power, faulty bus capacitors, etc. Solution: Check if the power input is normal, inspect the bus capacitors for damage, and replace if necessary.
  • E002: Acceleration overvoltage. Possible causes include excessively short acceleration time, sudden load changes, etc. Solution: Adjust the acceleration time and check for load stability.
  • E003: Constant speed overvoltage. Similar to E002 but occurs during constant speed operation. Solution is the same.
  • E004: Acceleration overcurrent. Possible causes include motor stall, excessive load, etc. Solution: Inspect the motor and load conditions, reduce the load, or optimize motor operating conditions.
  • E005: Deceleration overcurrent. Possible causes include excessively short deceleration time, large load inertia, etc. Solution: Adjust the deceleration time and consider using a braking unit and braking resistor.

Please note that the above content is based on the information you provided. During actual operation, please refer to the VFD manual and related materials. If you have any questions, please contact Longi Electromechanical’s technical support or professional maintenance personnel promptly.

Posted on Leave a comment

Fault Analysis and Resolution of ‘INH’ Alarm on Nidec Unidrive M300 and HS30 Servo Drive

Analysis and Solution for “INH” Alarm in Nidec Unidrive M300 and HS30 Series Servo Drive

Fault Analysis

INH' Alarm on Nidec Unidrive M300 and HS30 Servo Drive
  • Safety Input Trigger:
    • The Unidrive M300 and HS30 supports various safety functions, such as Safe Torque Off (STO). Activation of safety inputs, like STO signals, will place the drive in an inhibit state, preventing unintended motor rotation.
  • Control Parameter Settings:
    • Parameter P06.015 (Drive Enable) is one of the key control parameters, used to enable or disable drive output. When P06.015 is set to 0 (disabled), the drive will be in an inhibit state.
  • External Control Signals:
    • Incorrect configuration or faults in other external control signals, such as remote control signals, may also cause the drive to enter an inhibit state.
  • Drive Faults:
    • Although uncommon, internal drive faults or software issues may also result in “INH” alarms.

Solution Methods

Detailed description of STO function
  • Check Safety Inputs:
    • Confirm that all safety inputs (e.g., STO signals) are correctly connected and in the desired state. Check if external safety devices (e.g., emergency stop buttons) have been reset.
  • Verify Control Parameters:
    • Check the setting of parameter P06.015 through the drive’s Human Machine Interface (HMI) or configuration software. Ensure the parameter is set to 1 (enabled) to allow drive output.
  • Inspect External Control Signals:
    • Verify the wiring and logic of all external control signals (e.g., remote control signals). Ensure no erroneous signals are causing the drive to enter an inhibit state.
  • Restart the Drive:
    • After confirming all configurations are correct, attempt to restart the drive. Sometimes a simple restart can resolve issues due to software hangs or communication errors.
  • View Fault Records:
    • Use the drive’s fault diagnosis function to check for any other related fault records. These records may provide additional clues leading to the “INH” alarm.
  • Contact Technical Support:
    • If the above steps fail to resolve the issue, it is recommended to contact Nidec’s technical support team for further assistance.

Special Attention to Parameter P06.015

M300 servo wiring diagram and STO external wiring
  • Pre-modification Confirmation:
    • Before modifying P06.015 or any critical control parameters, ensure an understanding of the specific role and impact of the parameter, and consult relevant documentation or technical support.
  • Safe Operation:
    • Before making any modifications, ensure the drive and motor are in a safe state to avoid unexpected start-ups or damage to the equipment.

By following these steps, you should be able to diagnose and resolve the “INH” alarm issue on the Unidrive M300 servo drive. If the problem persists, consider seeking professional assistance from Longi Electromechanical.

Posted on Leave a comment

Theta VFD T8 Series User Guide

I. Procedure for Viewing and Modifying Function Codes on the T8 Series VFD Operator Panel

  1. Starting the Operator Panel:
    • After powering on the VFD, press the power button (labeled “POWER” or similar symbol) on the operator panel to activate it.
  2. Viewing and Modifying Function Codes:
    • Use the directional keys (↑↓←→) on the operator panel to select the desired function code for viewing or modification.
    • Press the “ENTER” key to enter edit mode, where you can input new parameter values using the numeric keys or view the current values.
    • After making changes, press “ENTER” again to confirm the modifications and exit edit mode.
    • Note: Access to some advanced function codes may require entering a password.
  3. Parameter Structure and Status Parameter Review and Setting:
    • VFD parameters are typically grouped, such as motor parameters (P0 group), control parameters (P1 group), and protection parameters (P2 group).
    • To review specific parameters, refer to the parameter table in the manual to find the corresponding parameter number (e.g., P0.01, P1.05) and parameter description.
    • Status parameters (e.g., current frequency, current, voltage) can be directly viewed through specific function codes, providing real-time insights into the VFD’s operating status.
Operation panel buttons and display instructions diagram

II. Explanation of Control Circuit Terminals and Wiring Methods for the T8 VFD

  1. Explanation of Control Circuit Terminals:
    • FWD/REV (Forward/Reverse Control Terminals): Connect to external buttons or switches to control the VFD’s forward and reverse rotation.
    • RUN/STOP (Run/Stop Control Terminals): Control the VFD’s start and stop functions.
    • AI1/AI2 (Analog Input Terminals): Receive analog signals from potentiometers, PLCs, etc., for frequency adjustment.
    • FAULT (Fault Output Terminal): Outputs a signal to external devices when the VFD detects a fault.
    • RUN (Run Indicator Light): Illuminates when the VFD is in the running state.
  2. Wiring Methods for the Control Circuit:
    • Connect the corresponding control signal wires to the designated terminals based on actual control requirements.
    • When using terminal start and potentiometer adjustment, ensure:
      • Analog input parameters are set correctly, including input type (voltage/current) and range.
      • The frequency setting method is selected as “Analog Input.”
      • Forward/reverse control parameters are set according to actual needs.

III. Explanation and Resolution of VFD Fault Codes

T8 inverter control circuit wiring diagram

Based on the specific instructions in the “Theta VFD T8 Series Manual,” here are some common fault codes and their resolutions:

  • OC (Overcurrent Fault): Check if the motor and load are excessively large, optimize motor parameters or load distribution; inspect motor insulation for integrity.
  • OV (Overvoltage Fault): Verify input voltage stability, use a voltage stabilizer if necessary; inspect power lines for abnormalities.
  • UV (Undervoltage Fault): Check the input power source for normalcy, troubleshoot power supply issues; inspect power lines for poor contact.
  • OH (Overheat Fault): Improve ventilation conditions, reduce ambient temperature; check for blocked heat sinks and clean dust inside the VFD.
  • EF (External Fault): Verify the normalcy of the external fault signal source; inspect the wiring of external devices for secure connections.

Please note that this content is a summary of the user guide based on select sections of the “Theta VFD T8 Series Manual.” Always refer to the original manual for detailed steps, precautions, and any additional information. For questions or further assistance, consult the manual or contact longi VFD’s technical support department.

Posted on Leave a comment

CHF100A Series Vector Universal VFD Usage Guide:Usage of Operation Panel, Startup and Debugging of VFD Terminal Mode, Analysis and Solutions for VFD Fault Codes

I. Operation Panel (Keyboard) Usage

The operation panel (keyboard) of the CHF100A Series Vector Universal VFD serves as the primary interface for VFD control and parameter setting. Here are the basic keyboard operation methods:

  1. Power-on and Display:
    • Upon connecting the VFD’s power supply, the display on the operation panel will illuminate, showing the current status or default parameters.
  2. Key Functions:
    • PRG: Programming key, used to enter or exit parameter setting mode.
    • SHIFT: Shift key, combined with numeric keys to select or modify high-order digits of parameters.
    • ESC: Escape key, used to exit the current setting or menu.
    • ENT: Enter key, used to confirm current settings or selections.
    • DATA: Data toggle key, used in some settings to switch between displaying different data items.
  3. Parameter Setting Procedure:
    • Press the PRG key to enter parameter setting mode.
    • Use arrow keys (if equipped) or SHIFT + numeric keys to select the desired parameter number.
    • Press the ENT key to enter the parameter’s setting interface.
    • Modify the parameter value using arrow keys or numeric keys.
    • Press the ENT key again to confirm the setting.
    • Press the ESC key to exit parameter setting mode.
INVT VFD CHF100A keyboard operation diagram

II. VFD Terminal Startup and Potentiometer Speed Regulation Wiring

  1. Terminal Startup Wiring:
    • Refer to the electrical wiring diagram in the manual (typically around page 75) to locate the input terminals related to startup (e.g., S1, S2).
    • Connect the external startup signal (e.g., pushbutton switch, PLC output) to the corresponding startup terminals.
    • Configure parameters as needed to ensure the VFD recognizes and responds to these startup signals.
  2. Potentiometer Speed Regulation Wiring:
    • Locate the analog input terminals (e.g., AI1, AI2) on the VFD, which receive analog signals from the potentiometer.
    • Connect the wiper of the potentiometer to the AI1 or AI2 terminal, and the fixed terminal to the common ground (e.g., COM).
    • Adjust the potentiometer to vary the output signal, thereby controlling the VFD’s output frequency and motor speed.
CHF100A inverter wiring diagram

III. VFD Fault Code Analysis and Troubleshooting

When a CHF100A Series VFD encounters a fault, it displays the corresponding fault code on its screen. Here are some common fault codes, their analysis, and troubleshooting methods:

  1. OC (Overcurrent):
    • Cause: Excessive motor or load, output short circuit, faulty cabling or wiring.
    • Solution: Check the motor and load to ensure they are within normal ranges; inspect cabling and wiring for correctness; increase deceleration time or reduce acceleration current.
  2. OV (Overvoltage):
    • Cause: Excessive input voltage, inadequate deceleration time.
    • Solution: Verify that the input voltage meets specifications; increase deceleration time.
  3. UV (Undervoltage):
    • Cause: Insufficient input voltage, power supply failure.
    • Solution: Check the power supply voltage for normalcy; inspect power lines and fuses for integrity.
  4. OH (Overheating):
    • Cause: Elevated ambient temperature, poor ventilation, clogged heat sink.
    • Solution: Improve ventilation to enhance cooling, reduce ambient temperature; clean dust and debris from the heat sink.

Please note that these are exemplary analyses and solutions. Always refer to actual circumstances and detailed instructions in the manual. When dealing with any electrical fault, adhere strictly to safety procedures and consider power disconnection to avoid electrical shock risks.

Posted on Leave a comment

User Guide for Delta VFD MS300 Series: Operation Panel Usage, Startup and Debugging of VFD Terminal Mode, Analysis and Solutions for VFD Fault Codes

Delta VFD MS300 Series User Guide

I. Operating Panel Usage

  1. Power-On and Display
    • Upon powering on, the VFD automatically conducts a self-test and then enters standby mode. The display on the operating panel shows the current status and parameters.
  2. Function Key Operations
    • RUN/STOP Button: Press RUN to start the VFD and STOP to halt its operation.
    • Direction Selection (FWD/REV): Used to select forward or reverse rotation for the motor.
    • Frequency Adjustment Keys: Adjust the output frequency using the up and down arrow keys. In automatic mode, these keys may be disabled.
    • MENU Button: Enters the main menu, allowing access and modification of various settings.
    • ENTER Button: Confirms the current selection or enters setup mode.
    • ESC Button: Exits the current setup or returns to the previous menu level.
  3. Parameter Settings
    • Navigate to the parameter settings menu, use the arrow keys to select the parameter to modify, press ENTER to enter edit mode, adjust the parameter value with the up/down arrow keys, and confirm with ENTER.
digital keypad KPC-CC01 Functional Description

II. Wiring for Terminal Start and Potentiometer Speed Control

  1. Starting Terminal Wiring
    • Forward Start (FWD): Connect the external control signal to the VFD’s forward start terminal (e.g., FWD).
    • Reverse Start (REV): For reverse rotation, connect the signal to the reverse start terminal (e.g., REV). Typically, forward and reverse cannot be activated simultaneously.
    • Stop: Connect the stop signal to the VFD’s stop terminal to interrupt output.
  2. Potentiometer Speed Control Wiring
    • Connect a potentiometer to the analog input terminal (e.g., AVI or ACI) of the VFD. Attach the two fixed ends of the potentiometer to the VFD’s power supply (e.g., +10V and GND), and connect the sliding end to the VFD’s analog input terminal.
    • According to the parameter settings in the manual (e.g., parameter 03-00), configure the relevant parameter to “frequency command” so that the VFD can adjust its output frequency based on the voltage signal from the potentiometer.
MS300 vfd standard wiring diagram

III. Parameter Configuration

  1. Basic Parameter Settings
    • Maximum Operating Frequency (Parameter 01-00): Set the maximum output frequency based on the motor specifications.
    • Acceleration/Deceleration Time (Parameters 01-12 through 01-19): Configure appropriate acceleration and deceleration times to avoid mechanical shocks and overcurrents, tailored to your application’s needs.
    • Starting Frequency (Parameter 01-09): Set the initial frequency at startup to mitigate starting surges.
  2. Input/Output Terminal Configuration
    • Multi-function Input Terminals (Parameters 02-01 through 02-07): Assign each terminal’s function according to your control requirements, such as start, stop, and direction control.
    • Analog Input Configuration (e.g., Parameter 03-00): Specify the function of AVI, ACI, and other analog input terminals, such as frequency reference or torque control.
  3. Protection Parameters
    • Overcurrent Protection (Parameters 06-03 through 06-04): Configure the overcurrent protection threshold and duration to safeguard the motor and VFD.
    • Overvoltage/Undervoltage Protection (Parameters 06-00, 06-01): Set voltage protection thresholds to ensure stable operation amidst voltage fluctuations.

IV. Fault Code Analysis and Resolution

  1. Overcurrent (OC)
    • Cause: Excessive motor load, too short acceleration time, motor malfunction, etc.
    • Resolution: Inspect the motor and load conditions, adjust the acceleration time, and check for motor damage.
  2. Overvoltage (OV)
    • Cause: Excessive input voltage, too short deceleration time, insufficient braking resistance, etc.
    • Resolution: Verify the input voltage, adjust the deceleration time, and consider adding braking resistance.
  3. Undervoltage (LV)
    • Cause: Low input voltage, voltage drop due to long power lines, etc.
    • Resolution: Check the power supply voltage and optimize power line layout.
  4. Overheating (OH)
    • Cause: High ambient temperature, poor heat dissipation, excessive load, etc.
    • Resolution: Improve cooling conditions, reduce the load, and inspect and clean the cooling fan.
  5. Communication Fault
    • Cause: Communication line issues, incorrect parameter settings, address conflicts, etc.
    • Resolution: Examine the communication lines, verify communication parameter settings, and ensure unique device addresses.

By following this guide, you can effectively use and maintain the Delta VFD MS300 series, ensuring stable operation and optimal performance.

Posted on Leave a comment

JACT AT500 Inverter Operation Guide and Fault Handling Summary

AT500 Inverter Operation Guide and Fault Handling Summary


I. AT500 Inverter Operation Panel Usage

  1. Operation Panel Layout and Indicator Description:
    • Introduces the display, buttons (RUN, STOP/RES, MK, Λ, V, >>, etc.) on the operation panel and their functions.
    • Explains the meanings of various indicators (Run, Alm, Hz, A, V, %, rpm, F/R, etc.).
  2. Menu and Parameter Settings:
    • Describes the three-level menu mode (function parameter group, function code, function code modification) and its operation method.
    • Elaborates on how to view and modify various inverter parameters through the operation panel.
  3. Operation Mode Control:
    • Introduces starting the inverter via the RUN button and stopping it via the STOP/RES button.
    • Explains the jog operation function and its debugging applications.
Function diagram of AT500 inverter operation panel buttons

II. Terminal Control and External Potentiometer Debugging Mode Setup

  1. Terminal Control Setup:
    • Guides users to enter the F0 parameter group and set F0.02 to 1 to enable terminal control.
    • Demonstrates how to assign functions to each input terminal through the F2 parameter group and explains wiring requirements.
  2. External Potentiometer Debugging Mode:
    • Teaches users to set F0.03 or F0.04 to AI3 (keyboard potentiometer) to adjust the output frequency by rotating the potentiometer knob.
JACT AT500 inverter wiring diagram

III. Inverter Fault Code Classification and Troubleshooting Methods

  1. Overcurrent Faults (Err02-Err04):
    • Lists possible causes (output circuit short circuit, too short acceleration/deceleration time, etc.).
    • Provides solutions (check output circuit, adjust acceleration/deceleration time, etc.).
  2. Overvoltage Faults (Err05-Err07):
    • Analyzes fault causes (excessively high input voltage, external force during deceleration, etc.).
    • Offers remedies (adjust input voltage, eliminate external force during deceleration, etc.).
  3. Undervoltage Fault (Err09):
    • Describes fault causes (instantaneous power failure, low input voltage, etc.).
    • Suggests solutions (check input power supply, adjust voltage range, etc.).
  4. Overload Faults (Err10-Err11):
    • Indicates faults may be caused by excessive load, motor stall, etc.
    • Proposes reducing the load, checking the motor and mechanical conditions, etc.
  5. Input/Output Phase Loss Faults (Err12-Err13):
    • Analyzes fault causes (input power phase loss, faulty output wires or motor, etc.).
    • Offers advice on checking power and motor, troubleshooting peripheral faults, etc.
  6. Module Overheating Fault (Err14):
    • Explains fault causes (high ambient temperature, blocked air ducts, etc.).
    • Emphasizes the importance of reducing ambient temperature, cleaning air ducts, replacing fans, etc.
  7. Communication Fault (Err16):
    • Mentions possible causes (incorrect communication parameter settings, faulty communication cables, etc.).
    • Suggests checking communication parameters, cables, and the host computer.
Posted on Leave a comment

POWTRAN PI500 Series Current Vector Inverter: User Guide & Essential Features

This comprehensive guide covers the key features and essential operations of the POWTRAN PI500 Series high-performance current vector inverter, including parameter adjustment via the panel, start/stop control through terminals, external potentiometer debugging mode configuration, and multi-speed settings.

VFD panel operation method of POWTRAN

1. Adjusting Parameters via the Inverter Panel

To adjust parameters using the inverter’s keypad, follow these steps:

  • Enter Menu: Press the PRG key to enter the parameter setting mode.
  • Select Parameter Group: Use the arrow keys to select the desired function parameter group (e.g., F0 group for basic function parameters).
  • Select Function Code: Within the selected group, use the arrow keys to choose the function code you wish to modify.
  • Adjust Parameter Value: Use the increment/decrement keys to adjust the parameter value or enter a new value directly with the numeric keys.
  • Save Settings: After making changes, press ENTER to confirm and save your settings.

Note: Some parameters cannot be modified during operation and require the inverter to be stopped first. Always consult the manual thoroughly before adjusting parameters.

Wiring Diagram of POWTRAN PI500

2. Starting and Stopping the Inverter via Terminals

To control the inverter’s start and stop via external terminals, follow these configuration steps:

  • Set Command Source: Set F0.11 (Command Source Selection) to “1” (Terminal Control) to enable external terminal operation.
  • Assign Terminal Functions: Use F1 group function codes (e.g., F1.00, F1.01) to assign specific input terminals (e.g., DI1, DI2) for forward, reverse, stop, and other functions.
  • Wiring: Connect the external control signal wires correctly to the designated input terminals based on your settings.

To start the inverter, apply a closure signal to the forward terminal (e.g., DI1). To stop, apply a stop signal to the stop terminal (which may be DI2, depending on your configuration) or disconnect the forward signal.

External potentiometer analog quantity given wiring diagram of PI500

3. Setting External Potentiometer Adjustment Mode

To configure the inverter for external potentiometer adjustment, follow these steps:

  • Configure AI1 Input:
    • Wiring: Connect the external potentiometer’s output to the inverter’s AI1 and GND terminals.
    • Set Input Range: Adjust F1.12 (AIC1 Minimum Input) and F1.14 (AIC1 Maximum Input) based on the potentiometer’s output range to ensure the inverter interprets the signals correctly.
  • Select Frequency Source: Set F0.03 (Main Frequency Source Setting) to “2” (Analog AI1 Setting) to use the AI1 input signal as the frequency reference.
  • Start Adjustment: Once configured, rotating the external potentiometer will adjust the inverter’s output frequency.
Multi speed functional wiring diagram of PI500

4. Introduction to Multi-speed Functionality

The multi-speed feature enables preset speed profiles, allowing quick switching between them via external signals.

  • Preset Speeds: Use E1 group function codes (E1.00 to E1.15) to set up to 16 different speed segments, each representing a percentage of the maximum frequency.
  • Assign Terminal Functions: Allocate input terminals (e.g., S1, S2, S3, S4) through F1 group function codes to select between the multi-speed segments based on their combinational states.
  • Set Acceleration/Deceleration Times: Customize acceleration and deceleration times for seamless speed transitions using parameters like F0.13 to F0.15.
  • Choose Speed Switching Method: Optionally, utilize external signals (high-speed pulses, communication signals) for dynamic speed segment switching.

To utilize the multi-speed feature, manipulate the allocated external terminals or transmit corresponding control signals. The inverter will then adjust its operating frequency according to the activated speed segment.

Notes:

  • Ensure speed segment settings align with the motor and inverter’s capabilities.
  • Carefully consider the mechanical load’s response to acceleration and deceleration when setting these times.

By following these configurations, you can flexibly manage the inverter’s speed to meet various process demands, while also benefiting from the manual’s detailed guidance for troubleshooting and maintaining optimal performance.

To learn more about the usage of PI500 VFD, you can download its manual from Google Drive or contact our service:https://drive.google.com/file/d/1zCUn1w6h9rEkvbP0yPJ1qAA5–T7axBt/view?usp=sharing

Posted on Leave a comment

Comprehensive Guide to Resetting a Toshiba VFD (VF-A7)to Factory Default Settings

To ensure that a Toshiba Variable Frequency Drive (VFD) is restored to its factory default settings, follow this detailed, comprehensive guide that incorporates all provided images and specific requirements:

I. Understanding the KYP Parameter and Factory Reset

The KYP parameter is a special feature in Toshiba VFDs that allows users to reset the drive to its factory default settings. When the KYP is set to a specific value (usually “3”, but please refer to the VFD’s user manual for confirmation), all other parameters will be reset to their default states.

II. Recording Important Parameters (Optional Step)

Before performing the factory reset operation, it is recommended to record all important or customized parameter settings. This step is optional but highly advised so that these parameters can be restored if needed or referenced against the new settings.

Basic Method for Toshiba VFD to Return to Factory Settings

III. Performing the Factory Reset Operation

  1. Initial Display:
    • The VFD’s LED display will show the current operating frequency (during stoppage).
  2. Entering Parameter Setting Mode:
    • Press the MON key, and the screen will display the first basic parameter, such as “Auto Acceleration/Deceleration (RU1)” or another parameter.
  3. Selecting the KYP Parameter:
    • Use the △ or ▽ keys to scroll through the parameter list until you find the KYP parameter.
  4. Viewing and Modifying the KYP Value:
    • Press the ENTER key to enter the KYP parameter setting interface.
    • The screen will now display the current setting of the KYP parameter (usually “0” or another non-specific value).
    • Use the △ or ▽ keys to change the KYP value to the specific value for executing the factory reset (usually “3”, but please confirm by referring to the user manual).
    • Press the ENTER key to confirm the modification.
  5. Confirmation and Initialization:
    • The screen will display “In it” or similar messaging, indicating that initialization is in progress.
    • All parameters will be reset to their factory default settings.
    • The initialization process may take some time, so please wait patiently.
  6. Restoring the Original Display:
    • Once initialization is complete, the LED display will return to its original state, such as showing the operating frequency.
KYP parameter description for Toshiba VFD

IV. Verifying the Factory Reset

After performing the factory reset operation, it is recommended to recheck all parameters to ensure they have been correctly reset to their factory default values. You can refer to the VFD’s user manual or contact technical support for detailed information on factory default values.

V. Important Considerations During Operation

  • Before performing the factory reset operation, ensure that the VFD is stopped and disconnected from the power source.
  • During the operation, please ensure that no other parameters are inadvertently modified, as this may affect the device’s performance.
  • If you encounter any doubts or uncertainties during the operation, press the MON key multiple times and restart from the basic parameter display.
  • If you are unsure how to perform the factory reset operation or encounter any issues, please contact Toshiba VFD technical support for assistance.
The KYP parameter of Toshiba VFD is set to 3

By following these steps, you can successfully reset your Toshiba VFD(VF-A7) to its factory default settings, restoring its original configuration. This will help ensure the VFD’s performance and stability, providing a solid foundation for its subsequent use.

The above is the method for resetting the VF-A7 series parameters of Toshiba VFD to factory values. It is derived from the summary and induction of the Toshiba VFD manual. If you need a complete Toshiba VFD manual, you can contact us directly or download it from Google drive:https://drive.google.com/file/d/1u2o8VJ3vwT1avatI4qsSRUVXlOebqgvY/view?usp=sharing

Posted on Leave a comment

Principles, usage methods, precautions, maintenance methods, and key points for high-voltage inverters (taking the Senlan SBH series as an example)

I. High-Voltage Inverter Principles

The Senlan SBH series of high-voltage inverters utilize advanced multi-level unit series technology, which combines multiple low-voltage power units in series to achieve direct high-voltage input to high-voltage output conversion. Its core principles encompass several crucial components:

Circuit schematic diagram of unit series high-voltage inverter
  1. Phase-Shift Transformer: Employing a multi-secondary phase-shift design, this transformer converts grid high voltage into multiple low-voltage outputs for the power units. The phase-shift technology effectively reduces harmonic currents on the grid side, enhancing power quality.
  2. Power Units: Each power unit functions as an independent PWM inverter, capable of outputting voltage waveforms of specific amplitude and frequency. When multiple power units are connected in series, they form a high-voltage output, enabling precise control over high-voltage motors.
  3. Fiber-Optic Communication: High-speed and reliable communication between power units and the control cabinet is facilitated through fiber-optic cables, transmitting control signals and status information to ensure rapid system response and stability.
  4. Main Control System: Located within the control cabinet, this system oversees the logical control and computational processing of the entire inverter system. By receiving external commands and internal feedback signals, it precisely regulates the power units.
Electrical schematic diagram of power unit

II. Usage Method

  1. Installation and Wiring:
    • Install the inverter in a dry, well-ventilated, dust-free environment, keeping it away from flammable and explosive materials.
    • Follow the manual’s guidelines for wiring the main and control circuits, ensuring accurate and secure connections, with special attention paid to high-voltage isolation.
  2. Parameter Setting:
    • Utilize the human-machine interface (HMI) to configure the inverter’s various parameters, including motor settings, control modes, and protection configurations.
    • Adjust acceleration/deceleration times, V/F curves, and other parameters according to specific operating conditions to meet requirements.
  3. Startup and Commissioning:
    • Under safe conditions, follow the manual’s steps to initiate a no-load test of the inverter.
    • Observe the inverter’s operational status and motor response, gradually fine-tuning parameters to achieve optimal performance.

III. Precautions

Basic operation wiring connection
  1. Safety Considerations:
    • Throughout installation, commissioning, and maintenance, ensure power is disconnected and warning signs are displayed to prevent electrocution.
    • Strictly prohibit opening cabinet doors or touching live high-voltage components while the inverter is operational.
    • Operators must undergo professional training, familiarizing themselves with operational procedures and safety precautions.
  2. Environmental Requirements:
    • Verify the inverter’s installation environment complies with manual specifications, preventing damage from excessive temperature, humidity, or corrosive gases.
    • Regularly inspect and clean the inverter’s surroundings, ensuring proper ventilation.
  3. Periodic Inspections:
    • Routinely check the inverter’s terminal blocks, capacitors, resistors, and other components for damage, promptly replacing worn parts.
    • Keep an eye out for abnormal vibrations, noises, or odors emanating from the inverter, addressing any issues promptly.

IV. Maintenance Precautions

  1. Routine Maintenance:
    • Regularly verify the inverter’s operating environment, monitoring factors such as temperature and humidity.
    • Promptly attend to any unusual vibrations, sounds, or odors, investigating and resolving any issues encountered.
    • Schedule regular cleaning of fan filters and heat sinks to maintain optimal cooling performance.
  2. Scheduled Servicing:
    • Conduct a comprehensive inspection and maintenance service every 3 to 6 months.
    • Securely tighten terminal blocks, swap out aging capacitors and resistors, and clean circuit boards and air ducts to prevent dust accumulation.
  3. Professional Repairs:
    • For complex faults or specialized maintenance needs, promptly contact Senlan’s after-sales service team or qualified technicians. Avoid attempting unauthorized disassembly or repairs, which could exacerbate issues or pose safety hazards.
Posted on Leave a comment

Reasons for Slow Speed of Centrifuge Inverter and Solutions

Centrifuge frequency converter control cabinet

Centrifuges, as commonly used separation equipment in laboratories and industrial fields, rely heavily on stable and efficient rotational speed for optimal separation results and productivity. However, in practical applications, users may encounter issues where the centrifuge inverter operates at a sluggish pace, which not only affects separation effectiveness but also increases the risk of equipment failures. This article will analyze the reasons behind the slow speed of centrifuge inverters from multiple perspectives and provide corresponding solutions.

I. Reasons for Slow Speed of Centrifuge Inverter

  1. Excessive Material Load
    When the amount of material being processed by the centrifuge exceeds its design capacity, the rotational speed naturally suffers, leading to sluggish acceleration. In such cases, reducing the material load is necessary to avoid overloading the centrifuge.
  2. Accumulation of Impurities Inside the Centrifuge
    The interior of a centrifuge is prone to accumulating dust and other impurities, which can increase the rotational resistance of the rotor, thereby affecting the speed. Regular cleaning of the centrifuge to maintain equipment cleanliness is crucial to addressing this issue.
  3. Damage to Rotor Bearings
    Damage to rotor bearings can not only cause a decrease in rotational speed but also lead to abnormal noises. Inspecting and replacing damaged rotor bearings can restore the centrifuge to its normal operating speed.
  4. Loose or Worn Drive Belts
    Loose or worn drive belts are common causes of slow centrifuge speed. Regular inspection of belt tension and wear, along with timely replacement of damaged components, can ensure the proper functioning of the centrifuge.
  5. Motor Failures
    Motor failures, such as winding circuit breaks, rotor fractures, or inverter malfunctions, directly impact the rotational speed of the centrifuge. In such situations, motor replacement or electrical circuit repairs are necessary.
  6. Improper Inverter Parameter Settings
    As the key device controlling the centrifuge’s rotational speed, improper settings of the inverter parameters can also lead to sluggish speed. Checking and adjusting the inverter parameters to match the actual requirements of the centrifuge is essential.
  7. Electrical Control System Malfunctions
    Issues with components in the electrical control system, such as adjustable resistors, thyristors, and rectifier diodes, can also cause unstable motor speed. Regular inspection of these components and timely replacement of damaged parts are important measures for maintaining the stability of the centrifuge’s electrical control system.
Centrifuge and control system

II. Solutions

  1. Adjust Material Load
    Reasonably adjust the material load based on the centrifuge’s processing capacity to avoid overload operation.
  2. Regularly Clean the Centrifuge
    Establish a regular cleaning schedule to ensure the centrifuge is free from impurity accumulation and remains clean.
  3. Inspect and Replace Damaged Components
    Regularly inspect the condition of key components such as rotor bearings and drive belts, and promptly replace any damaged parts.
  4. Adjust Inverter Parameters
    Adjust the inverter parameters according to the actual needs of the centrifuge to ensure stable rotational speed and compliance with process requirements.
  5. Enhance Electrical Control System Maintenance
    Regularly inspect the condition of components in the electrical control system, such as adjustable resistors, thyristors, and rectifier diodes, and promptly repair or replace any damaged parts.
  6. Professional Repair and Technical Support
    For complex fault issues, seek the assistance of professional repair personnel and technical support to ensure the centrifuge receives proper maintenance and repair.

III. Conclusion

The slow speed of a centrifuge inverter can be attributed to various factors, including excessive material load, accumulation of impurities inside the centrifuge, damage to rotor bearings, loose or worn drive belts, motor failures, improper inverter parameter settings, and electrical control system malfunctions. By implementing measures such as adjusting material load, regularly cleaning the equipment, promptly replacing damaged components, adjusting inverter parameters, and enhancing electrical control system maintenance, the issue of slow centrifuge inverter speed can be effectively resolved, thereby improving the operational efficiency and stability of the equipment. Additionally, for complex fault issues, seeking professional repair and technical support is essential.