Posted on Leave a comment

The Meaning and Solutions for AL-24 Alarm on FANUC αi Series Spindle Amplifiers

In the maintenance and repair of CNC machine tools, fault alarms are a common occurrence. For equipment using FANUC αi series spindle amplifiers, the AL-24 alarm is a typical code. This article will explore the meaning of this alarm, possible causes, and solutions, providing theoretical support and practical guidance for CNC servo system repairs.


AL-24

1. Meaning of the AL-24 Alarm

According to FANUC’s official documentation, the AL-24 alarm indicates that the serial communication data between the CNC (Computer Numerical Control system) and the spindle amplifier module contains errors. This alarm typically occurs when there is an abnormality in the communication link between the CNC and the spindle amplifier. It is important to note that this alarm does not necessarily indicate hardware failure; in most cases, it is caused by communication issues or external interference.

Scenarios Triggering the Alarm

  • The CNC is powered off while the spindle amplifier remains energized.
  • Serial communication is disrupted, causing data transmission errors.
  • Communication cables are loose, damaged, or poorly connected.

2. Possible Causes of the AL-24 Alarm

When diagnosing the AL-24 alarm, the investigation should focus on the communication link, cable conditions, and hardware status. Common causes include:

1. Communication Noise Interference

Serial data transmission between the CNC and the spindle amplifier may be disrupted by external electromagnetic noise, resulting in data errors and triggering the AL-24 alarm.

2. Cable Issues or Connection Problems

The communication cable is a critical link between the CNC and the spindle amplifier. Possible issues include:

  • Cable aging or internal breakage.
  • Loose or improperly secured connectors.
  • In the case of fiber optic communication, damaged optical connectors or modules.

3. Bundling of Communication and Power Cables

When communication cables are bundled with spindle or servo motor power cables, high-frequency currents may cause electromagnetic interference, affecting communication stability.

4. Hardware Malfunction

Hardware-related issues that may trigger the AL-24 alarm include:

  • Faulty internal circuit boards in the spindle amplifier module (SPM).
  • Damaged communication interface boards or modules in the CNC control system.

5. Parameter Configuration Issues

Incorrect communication parameter settings in the spindle amplifier or CNC can also lead to communication failures.


A06B-6140-h055

3. Solutions for the AL-24 Alarm

When addressing the AL-24 alarm, follow these steps for systematic troubleshooting:

1. Verify CNC Power Status

Check whether the CNC is properly powered. If the CNC is off, the spindle amplifier cannot establish communication, which is a normal reason for the alarm.

  • Action: Ensure the CNC is fully powered and there are no additional alarm codes.

2. Inspect Communication Cables

Communication cables are crucial for the connection between the CNC and the spindle amplifier. Diagnosing cable issues is a key step.

  • Steps:
    • Inspect the cable’s exterior for damage or aging.
    • Ensure connectors are securely plugged in.
    • For fiber optic communication, check the cleanliness of the optical connectors and the condition of the optical modules.
  • Actions:
    • Replace the communication cable and reconnect.
    • If optical modules are faulty, contact the supplier for replacement.

3. Address Noise Interference

Communication stability can be compromised by noise interference, particularly when communication cables are bundled with power cables.

  • Steps:
    • Check the routing of communication cables to ensure they are separated from power and servo cables.
    • Use well-shielded cables or add shielding to existing cables.
  • Actions: Separate communication cables from power cables to maintain a safe physical distance.

4. Examine the SPM Module

The internal circuit board of the spindle amplifier (SPM) may fail due to aging or external impact.

  • Actions:
    • Inspect the SPM module for physical damage or burn marks.
    • Contact FANUC support for repair or replacement if the module is faulty.

5. Validate CNC Hardware

If the SPM is functioning correctly, check the communication interface boards or modules on the CNC side.

  • Actions:
    • Replace the relevant communication boards and test.
    • Check the CNC’s alarm log for related issues.

6. Correct Parameter Settings

Incorrect communication parameters may prevent successful communication between the CNC and the SPM.

  • Actions:
    • Reconfigure communication parameters based on the equipment model and manual.
    • Ensure communication speed, protocols, and other settings match between the SPM and CNC.

4. Preventive Measures

To reduce the likelihood of AL-24 alarms, consider the following preventive measures:

  1. Regular Cable Inspection:
    • Ensure communication cables are free from aging, breakage, or damage.
    • Use durable, high-quality shielded cables.
  2. Optimize Cable Routing:
    • Keep communication cables separate from power lines to avoid interference.
  3. Routine Hardware Maintenance:
    • Inspect the SPM and CNC hardware regularly and replace aging components promptly.
    • Clean amplifier and cable interfaces to prevent dust accumulation.
  4. Environmental Control:
    • Minimize strong electromagnetic interference around the equipment.
    • Provide adequate cooling for amplifiers and control cabinets.

Conclusion

The AL-24 alarm, a common fault code in FANUC αi series spindle amplifiers, primarily reflects communication abnormalities between the CNC and the spindle amplifier. By understanding its meaning, identifying causes, and following a structured troubleshooting process, maintenance personnel can quickly resolve the issue. Additionally, implementing preventive measures can significantly reduce the occurrence of such alarms, ensuring long-term stability and performance of the equipment.

Posted on Leave a comment

Comprehensive Guide to FANUC Servo System Troubleshooting and Repair(DB DELAY FAILURE)

FANUC servo systems, widely used in industrial automation, are renowned for their reliability and precision. However, like any sophisticated equipment, they can experience faults that require systematic diagnosis and repair. This guide focuses on two common faults: “NEED REF RETURN” (Absolute Pulse Coder Alarm) and “DB RELAY FAILURE” (Dynamic Brake Relay Issue), along with general troubleshooting techniques.


DB DELAY FAILURE

1. “NEED REF RETURN” Alarm

Fault Description

The “NEED REF RETURN” alarm indicates that the absolute position data of the encoder is lost or the axis requires a reference return operation. This typically happens when:

  • The encoder battery voltage is low or the battery has failed.
  • The system loses its absolute position data due to a power interruption or improper initialization.

Repair Process

  1. Check the Encoder Battery:
    • Replace the battery if its voltage is below the specified threshold (typically 3.6V for FANUC systems).
    • Ensure the battery is replaced with the power ON to prevent loss of encoder data.
  2. Perform Reference Return:
    • Access the machine’s control interface and initiate the reference return operation for the affected axes.
    • Follow the machine tool builder’s specific procedures for homing operations.
  3. Inspect Encoder Wiring:
    • Verify that the encoder cables are securely connected and free from damage.
    • Check for continuity and signal integrity using a multimeter or oscilloscope if necessary.
  4. Reset the Alarm:
    • Once the reference return is completed, reset the alarm via the machine control panel.

A06B-6240-H105

2. “DB RELAY FAILURE” Alarm

Fault Description

The “DB RELAY FAILURE” alarm indicates an issue with the Dynamic Brake (DB) relay, responsible for safely braking the motor during stop or emergency stop conditions. Possible causes include:

  • A malfunctioning DB relay (burnt coil or damaged contacts).
  • Faults in the relay driver circuit.
  • Open or damaged connections in the DB circuit.

Repair Process

  1. Visual Inspection:
    • Open the servo amplifier and inspect the relay for signs of burning, discoloration, or physical damage.
    • Check the PCB for any visible defects such as burnt traces or damaged components.
  2. Test the DB Relay:
    • Use a multimeter to measure the resistance of the relay coil. A functional relay typically has a specific resistance value (e.g., tens to hundreds of ohms). If open or short-circuited, the relay needs replacement.
    • Inspect the relay contacts for proper operation and absence of welding or pitting.
  3. Inspect the Driver Circuit:
    • Check the transistors or ICs driving the DB relay for shorts or open circuits.
    • Use an oscilloscope to verify the control signal to the relay during operation.
  4. Verify DB Resistor and Wiring:
    • Ensure the dynamic braking resistor is intact and its connections are secure.
    • Measure the resistor’s value and compare it with the specifications.
  5. Replace Faulty Components:
    • Replace the relay or driver components if faults are detected.
    • Ensure replacement parts are genuine and match the original specifications.
  6. Reset and Test:
    • After repairs, reset the system and perform operational tests to confirm the alarm is cleared and the DB relay functions correctly.

A06B-6079-H207

3. General Troubleshooting Techniques

LED Indicators

  • Check the LED status on the servo amplifier front panel. LED patterns often provide diagnostic information about the amplifier’s status and errors.

Error Codes

  • Refer to the system’s maintenance manual for detailed descriptions of error codes.
  • FANUC manuals, such as the GFZ-65195EN/01, provide comprehensive troubleshooting steps for each alarm code.

Electrical Checks

  • Measure power supply voltages to ensure they are within specified ranges.
  • Inspect connectors, cables, and PCB traces for continuity and integrity.

Parameter Verification

  • Confirm that the servo parameters are set correctly. Incorrect parameters can lead to operational issues and alarms.

4. Preventive Maintenance Tips

  1. Regular Battery Replacement:
    • Schedule periodic checks and replacements for the encoder battery to avoid position loss.
  2. Keep Components Clean:
    • Clean the servo amplifier and surrounding areas to prevent dust and debris accumulation.
  3. Inspect Wiring:
    • Regularly inspect cables and connectors for wear, corrosion, or loose connections.
  4. Follow Manufacturer Guidelines:
    • Always adhere to FANUC’s maintenance and operational guidelines for optimal system performance.

A06B-6079-H207 power board and fault relay location

Conclusion

By understanding the causes and systematic repair methods for alarms like “NEED REF RETURN” and “DB RELAY FAILURE,” maintenance engineers can ensure minimal downtime and enhanced reliability of FANUC servo systems. Regular preventive maintenance further helps in avoiding recurring issues and extending the life of these critical components.

Comprehensive Guide to FANUC Servo System Troubleshooting and Repair

FANUC servo systems, widely used in industrial automation, are renowned for their reliability and precision. However, like any sophisticated equipment, they can experience faults that require systematic diagnosis and repair. This guide focuses on two common faults: “NEED REF RETURN” (Absolute Pulse Coder Alarm) and “DB RELAY FAILURE” (Dynamic Brake Relay Issue), along with general troubleshooting techniques.


1. “NEED REF RETURN” Alarm

Fault Description

The “NEED REF RETURN” alarm indicates that the absolute position data of the encoder is lost or the axis requires a reference return operation. This typically happens when:

  • The encoder battery voltage is low or the battery has failed.
  • The system loses its absolute position data due to a power interruption or improper initialization.

Repair Process

  1. Check the Encoder Battery:
    • Replace the battery if its voltage is below the specified threshold (typically 3.6V for FANUC systems).
    • Ensure the battery is replaced with the power ON to prevent loss of encoder data.
  2. Perform Reference Return:
    • Access the machine’s control interface and initiate the reference return operation for the affected axes.
    • Follow the machine tool builder’s specific procedures for homing operations.
  3. Inspect Encoder Wiring:
    • Verify that the encoder cables are securely connected and free from damage.
    • Check for continuity and signal integrity using a multimeter or oscilloscope if necessary.
  4. Reset the Alarm:
    • Once the reference return is completed, reset the alarm via the machine control panel.

2. “DB RELAY FAILURE” Alarm

Fault Description

The “DB RELAY FAILURE” alarm indicates an issue with the Dynamic Brake (DB) relay, responsible for safely braking the motor during stop or emergency stop conditions. Possible causes include:

  • A malfunctioning DB relay (burnt coil or damaged contacts).
  • Faults in the relay driver circuit.
  • Open or damaged connections in the DB circuit.

Repair Process

  1. Visual Inspection:
    • Open the servo amplifier and inspect the relay for signs of burning, discoloration, or physical damage.
    • Check the PCB for any visible defects such as burnt traces or damaged components.
  2. Test the DB Relay:
    • Use a multimeter to measure the resistance of the relay coil. A functional relay typically has a specific resistance value (e.g., tens to hundreds of ohms). If open or short-circuited, the relay needs replacement.
    • Inspect the relay contacts for proper operation and absence of welding or pitting.
  3. Inspect the Driver Circuit:
    • Check the transistors or ICs driving the DB relay for shorts or open circuits.
    • Use an oscilloscope to verify the control signal to the relay during operation.
  4. Verify DB Resistor and Wiring:
    • Ensure the dynamic braking resistor is intact and its connections are secure.
    • Measure the resistor’s value and compare it with the specifications.
  5. Replace Faulty Components:
    • Replace the relay or driver components if faults are detected.
    • Ensure replacement parts are genuine and match the original specifications.
  6. Reset and Test:
    • After repairs, reset the system and perform operational tests to confirm the alarm is cleared and the DB relay functions correctly.

3. General Troubleshooting Techniques

LED Indicators

  • Check the LED status on the servo amplifier front panel. LED patterns often provide diagnostic information about the amplifier’s status and errors.

Error Codes

  • Refer to the system’s maintenance manual for detailed descriptions of error codes.
  • FANUC manuals, such as the GFZ-65195EN/01, provide comprehensive troubleshooting steps for each alarm code.

Electrical Checks

  • Measure power supply voltages to ensure they are within specified ranges.
  • Inspect connectors, cables, and PCB traces for continuity and integrity.

Parameter Verification

  • Confirm that the servo parameters are set correctly. Incorrect parameters can lead to operational issues and alarms.

4. Preventive Maintenance Tips

  1. Regular Battery Replacement:
    • Schedule periodic checks and replacements for the encoder battery to avoid position loss.
  2. Keep Components Clean:
    • Clean the servo amplifier and surrounding areas to prevent dust and debris accumulation.
  3. Inspect Wiring:
    • Regularly inspect cables and connectors for wear, corrosion, or loose connections.
  4. Follow Manufacturer Guidelines:
    • Always adhere to FANUC’s maintenance and operational guidelines for optimal system performance.

Conclusion

By understanding the causes and systematic repair methods for alarms like “NEED REF RETURN” and “DB RELAY FAILURE,” maintenance engineers can ensure minimal downtime and enhanced reliability of FANUC servo systems. Regular preventive maintenance further helps in avoiding recurring issues and extending the life of these critical components.

FANUC servo systems, widely used in industrial automation, are renowned for their reliability and precision. However, like any sophisticated equipment, they can experience faults that require systematic diagnosis and repair. This guide focuses on two common faults: “NEED REF RETURN” (Absolute Pulse Coder Alarm) and “DB RELAY FAILURE” (Dynamic Brake Relay Issue), along with general troubleshooting techniques.


1. “NEED REF RETURN” Alarm

Fault Description

The “NEED REF RETURN” alarm indicates that the absolute position data of the encoder is lost or the axis requires a reference return operation. This typically happens when:

  • The encoder battery voltage is low or the battery has failed.
  • The system loses its absolute position data due to a power interruption or improper initialization.

Repair Process

  1. Check the Encoder Battery:
    • Replace the battery if its voltage is below the specified threshold (typically 3.6V for FANUC systems).
    • Ensure the battery is replaced with the power ON to prevent loss of encoder data.
  2. Perform Reference Return:
    • Access the machine’s control interface and initiate the reference return operation for the affected axes.
    • Follow the machine tool builder’s specific procedures for homing operations.
  3. Inspect Encoder Wiring:
    • Verify that the encoder cables are securely connected and free from damage.
    • Check for continuity and signal integrity using a multimeter or oscilloscope if necessary.
  4. Reset the Alarm:
    • Once the reference return is completed, reset the alarm via the machine control panel.

2. “DB RELAY FAILURE” Alarm

Fault Description

The “DB RELAY FAILURE” alarm indicates an issue with the Dynamic Brake (DB) relay, responsible for safely braking the motor during stop or emergency stop conditions. Possible causes include:

  • A malfunctioning DB relay (burnt coil or damaged contacts).
  • Faults in the relay driver circuit.
  • Open or damaged connections in the DB circuit.

Repair Process

  1. Visual Inspection:
    • Open the servo amplifier and inspect the relay for signs of burning, discoloration, or physical damage.
    • Check the PCB for any visible defects such as burnt traces or damaged components.
  2. Test the DB Relay:
    • Use a multimeter to measure the resistance of the relay coil. A functional relay typically has a specific resistance value (e.g., tens to hundreds of ohms). If open or short-circuited, the relay needs replacement.
    • Inspect the relay contacts for proper operation and absence of welding or pitting.
  3. Inspect the Driver Circuit:
    • Check the transistors or ICs driving the DB relay for shorts or open circuits.
    • Use an oscilloscope to verify the control signal to the relay during operation.
  4. Verify DB Resistor and Wiring:
    • Ensure the dynamic braking resistor is intact and its connections are secure.
    • Measure the resistor’s value and compare it with the specifications.
  5. Replace Faulty Components:
    • Replace the relay or driver components if faults are detected.
    • Ensure replacement parts are genuine and match the original specifications.
  6. Reset and Test:
    • After repairs, reset the system and perform operational tests to confirm the alarm is cleared and the DB relay functions correctly.

3. General Troubleshooting Techniques

LED Indicators

  • Check the LED status on the servo amplifier front panel. LED patterns often provide diagnostic information about the amplifier’s status and errors.

Error Codes

  • Refer to the system’s maintenance manual for detailed descriptions of error codes.
  • FANUC manuals, such as the GFZ-65195EN/01, provide comprehensive troubleshooting steps for each alarm code.

Electrical Checks

  • Measure power supply voltages to ensure they are within specified ranges.
  • Inspect connectors, cables, and PCB traces for continuity and integrity.

Parameter Verification

  • Confirm that the servo parameters are set correctly. Incorrect parameters can lead to operational issues and alarms.

4. Preventive Maintenance Tips

  1. Regular Battery Replacement:
    • Schedule periodic checks and replacements for the encoder battery to avoid position loss.
  2. Keep Components Clean:
    • Clean the servo amplifier and surrounding areas to prevent dust and debris accumulation.
  3. Inspect Wiring:
    • Regularly inspect cables and connectors for wear, corrosion, or loose connections.
  4. Follow Manufacturer Guidelines:
    • Always adhere to FANUC’s maintenance and operational guidelines for optimal system performance.

Conclusion

By understanding the causes and systematic repair methods for alarms like “NEED REF RETURN” and “DB RELAY FAILURE,” maintenance engineers can ensure minimal downtime and enhanced reliability of FANUC servo systems. Regular preventive maintenance further helps in avoiding recurring issues and extending the life of these critical components.

Posted on Leave a comment

Operation Guide for LS Inverter LSLV-M100 Series User Manual

I. Introduction to Operation Panel Functions and Password Setting/Locking

Introduction to Operation Panel Functions

The operation panel of the LS Inverter LSLV-M100 series integrates display and operation functions, facilitating intuitive operation and monitoring for users. The panel primarily consists of a digital tube display, indicator lights, and buttons. The digital tube is used to display operating status and parameter information, while the indicator lights indicate the current working status, such as running, forward rotation, reverse rotation, etc. The button section includes commonly used function buttons such as run, stop, and fault reset, as well as direction buttons and a confirmation button for parameter setting.

Password Setting and Elimination

To prevent unauthorized parameter modifications, the LSLV-M100 series inverter provides a password protection function. The specific steps for setting a password are as follows:

  • Enter the configuration function group: First, access the configuration function group (typically identified by P700 series codes) through the panel operations.
  • Select the password registration parameter: Within the configuration function group, locate the password registration parameter (e.g., P701).
  • Enter the password: Use the panel’s direction buttons and confirmation button to input the password, which must consist of 1 to 16 hexadecimal characters.
  • Save the settings: After inputting, press the confirmation button to save the settings.

The method for eliminating the password is similar to setting it. Simply change the password in the password registration parameter to the initial password (usually 0000) or leave it blank.

Front image of LSLV-M100

Parameter Locking

In addition to password protection, the LSLV-M100 series inverter also offers a parameter locking function. By locking the parameters, unintentional changes can be prevented. The specific steps are as follows:

  • Enter the configuration function group: Same as for setting the password, first access the configuration function group.
  • Select the parameter locking parameter: Locate the parameter locking parameter (e.g., P702).
  • Lock the parameters: Set the parameter locking parameter to 1 to lock all settable parameters.
  • Unlock the parameters: When needing to modify parameters, set the parameter locking parameter to 0 and enter the password to unlock.

II. Forward/Reverse Control via Terminals and Speed Adjustment with External Potentiometer

Forward/Reverse Control via Terminals

The LSLV-M100 series inverter supports forward/reverse control through multifunction input terminals. The specific wiring and settings are as follows:

  • Wiring: Connect the forward control signal to a multifunction input terminal (e.g., IN1) and the reverse control signal to another multifunction input terminal (e.g., IN2).
  • Parameter settings:
    • Enter the input terminal function group (e.g., P300 series).
    • Set the forward control terminal function (e.g., P301) to 1 (forward rotation).
    • Set the reverse control terminal function (e.g., P302) to 2 (reverse rotation).
    • In the operation group (e.g., P000 series), set the run command source to external terminals.
LSLV-M100 standard wiring diagram

Speed Adjustment with External Potentiometer

External potentiometer speed adjustment is a commonly used method, where the output frequency of the inverter is changed by adjusting the resistance of the external potentiometer. The specific wiring and settings are as follows:

  • Wiring: Connect the two ends of the external potentiometer to the analog input terminals of the inverter (e.g., V1 and GND).
  • Parameter settings:
    • Enter the input terminal function group.
    • Set the analog input terminal function to voltage input (e.g., set P310 to 1 for voltage input).
    • In the operation group, set the frequency setting method to analog input (e.g., set P003 to 2 for analog voltage input).

III. Fault Codes and Solutions

The LSLV-M100 series inverter features a comprehensive fault code display function, helping users quickly identify fault causes. Below are some common fault codes, their meanings, and solutions:

  • OC (Overcurrent): Indicates that the inverter’s output current exceeds the rated value. Possible causes include excessive load, motor stall, etc. Solutions include checking the load condition and adjusting the acceleration/deceleration time.
  • OV (Overvoltage): Indicates that the DC bus voltage of the inverter is too high. Possible causes include excessive input voltage and faulty braking resistor. Solutions include adjusting the input voltage and checking the braking resistor.
  • UV (Undervoltage): Indicates that the input voltage of the inverter is too low. Possible causes include unstable power supply voltage and phase loss in the input power supply. Solutions include checking the power supply voltage and the input power lines.
  • OH (Overheat): Indicates that the temperature of the inverter’s heatsink is too high. Possible causes include high ambient temperature and faulty cooling fan. Solutions include reducing the ambient temperature and replacing the cooling fan.

For the above faults, users can follow the fault troubleshooting process outlined in the manual to identify and resolve issues one by one based on the inverter’s fault code prompts.

Side image of LSLV-M100

IV. Conclusion

As a high-performance variable frequency speed control device, the LSLV-M100 series inverter provides a detailed operation guide and fault troubleshooting methods in its user manual. By familiarizing themselves with the functions of the operation panel, mastering password setting and locking, understanding the wiring and settings for forward/reverse control via terminals and speed adjustment with an external potentiometer, and grasping the solutions to common fault codes, users can operate and maintain the inverter more efficiently, ensuring its stable operation and optimal performance.

Posted on Leave a comment

Meaning and Troubleshooting of ID-14 Error in Hitachi X-MET8000 Spectrometer

Introduction

The X-MET8000 is a portable spectrometer developed by Hitachi, widely used in industrial fields such as metal composition analysis and material testing. Its core technology relies on the collaboration between the X-ray emission and reception system and the sample sensor to achieve precise analysis. However, users may encounter the ID-14 error, which indicates “Sample proximity sensor not detected, measurement stopped.” This issue not only affects work efficiency but may also cause damage to the device or inaccurate measurements. This article delves into the causes of the ID-14 error and provides detailed solutions based on practical repair experience.


ID:14 ERROR

1. The Meaning of ID-14 Error

The key to the ID-14 error lies in the message “Sample proximity sensor not detected.” Essentially, the detection system of the spectrometer cannot confirm whether the sample is properly placed. This is usually caused by the following three factors:

  1. Failure of the sample sensing system: The spectrometer uses an infrared sensor to detect whether the sample is in contact with the measurement window. A failure in this system may lead to detection errors.
  2. Issues with sample placement: If the sample does not completely cover the measurement window, has an uneven surface, or is unsuitable for measurement, this error will occur.
  3. Internal hardware or circuit issues: This includes failures in the infrared sensor, connecting circuits, or signal processing modules.

X-MET8000

2. Causes of the Error

Based on repair experience and the working principle of the device, the specific causes of the ID-14 error include:

1. Improper Sample Placement
  • The sample does not fully cover the measurement window.
  • The sample surface contains oil, oxide layers, or other obstructions, blocking the infrared signal.
  • The sample has an irregular shape (e.g., curved or uneven), making it difficult to contact the sensor tightly.
2. Infrared Sensor Issues

The infrared sensor is a key component related to the ID-14 error, with potential issues including:

  • Damage to the infrared emitter or receiver: The emitter cannot emit infrared signals, or the receiver cannot capture the reflected signals.
  • Cold solder joints: Prolonged use may lead to loose or broken solder joints between the sensing module and the FPC (flexible printed circuit).
  • Contamination or aging: Pollution on the sensor surface or aging components may weaken or disable the signal.
3. Circuit Connection Failures
  • FPC damage: The flexible circuit board connecting the sensing module to the mainboard may break due to bending, pulling, or prolonged use.
  • Connector issues: The FPC connector to the mainboard may not be tightly connected, or the contacts may be oxidized.
4. Control Circuit Issues
  • Infrared signal processing chip failure, preventing proper signal transmission.
  • Other related circuits on the mainboard (e.g., power supply modules) may malfunction, affecting the infrared module’s operation.

Scanning head

3. Solutions

Based on the above analysis, repair steps can be divided into the following aspects:

1. Checking the Sample

Before disassembling the device or performing more complex repairs, inspect the sample:

  • Clean the sample surface: Use isopropyl alcohol to clean the sample surface to remove oil, oxide layers, or dust.
  • Reposition the sample: Ensure the sample fully covers the measurement window and is in close contact with the sensor.
  • Replace the sample: If the sample surface is too rough or irregular, choose another sample for testing to rule out sample-related factors.
Infrared sensing sensor
2. Repairing the Sensor Module

If the sample is confirmed to be fine, focus on the sensor module:

  • Clean the infrared sensor: Use a lint-free cloth and isopropyl alcohol to clean the emitter and receiver surfaces, removing dust or stains.
  • Test the infrared emitter and receiver:
    • Use a multimeter to measure whether the emitter and receiver output signals.
    • Use an infrared camera or night vision device to check if the infrared emitter is emitting light (usually at 850nm or 950nm wavelengths).
  • Replace damaged sensor modules: If the sensor is confirmed to be faulty, replace it with a module of the same model.
3. Repairing Circuit Connections
  • Inspect the FPC:
    • Use a multimeter to measure whether all lines on the FPC are continuous.
    • If a break is found, repair it with fine wires or replace the entire FPC.
  • Repair solder joints:
    • Use a hot air rework station or a fine-tip soldering iron to re-solder the sensor module. Keep the soldering temperature between 280–320°C.
    • If the solder joints are aged or loose, remove the old solder and reapply fresh solder.
  • Check the connectors: Clean the connector contacts between the FPC and the mainboard. Replace the connector if necessary.
4. Checking the Mainboard and Control Circuits
  • Use an oscilloscope to check whether the signal processing chip on the mainboard is functioning correctly.
  • If the mainboard is faulty, contact the manufacturer for replacement or repair.

Infrared sensor head

4. Repair Precautions

  1. Safety First:
    • The X-MET8000 involves X-ray technology. Ensure the device is completely powered off before operation, and avoid contact with high-voltage parts.
    • Do not operate the X-ray system without proper safety measures.
  2. Tool Preparation:
    • Prepare tools such as a hot air rework station, multimeter, isopropyl alcohol, lint-free cloth, tweezers, etc.
    • Use a microscope if possible to assist with observation and soldering.
  3. Avoid Misoperation:
    • During repairs, avoid damaging surrounding components or circuits.
    • If you lack repair experience, consider handing the device over to professional technicians.

5. Conclusion

The ID-14 error is a common issue in Hitachi’s X-MET8000 spectrometer, usually caused by failures in the sample sensor or related circuits. Through systematic troubleshooting and repair methods, this issue can be effectively resolved, restoring the device to normal operation. This article combines practical repair cases to analyze the issue from four aspects: sample inspection, sensor module, circuit connection, and mainboard circuits, providing a clear troubleshooting framework for repair technicians.

In practice, repair personnel should flexibly adjust steps according to specific circumstances and ensure safety precautions are in place. If the issue persists, it is recommended to contact the manufacturer’s technical support for further assistance.

Posted on Leave a comment

User Manual and Operation Guide for Danfoss VLT® HVAC Basic Drive FC 101 Series

Table of Contents

  1. Panel Start, Stop, and Frequency Speed Adjustment
    • Panel Start and Stop Operation
    • Panel Frequency Speed Adjustment Settings
    • Manual Adjustment of Voltage/Frequency Ratio Parameters
    • Inverter Initialization Procedure
    • Password and Parameter Access Restriction Settings
  2. Terminal Forward/Reverse Control and External Potentiometer Speed Adjustment
    • Terminal Forward/Reverse Control Settings
    • External Potentiometer Frequency Speed Adjustment Settings
    • Explanation of Required Terminal Connections
  3. Fault Codes and Troubleshooting
    • List of Common Fault Codes
    • Fault Meanings Analysis
    • Troubleshooting Methods

Front view of FC-101

1. Panel Start, Stop, and Frequency Speed Adjustment

Panel Start and Stop Operation

The Danfoss FC 101 series inverter can be started and stopped via the Local Control Panel (LCP). The specific operations are as follows:

  • Start: Press the “[Hand On]” key on the LCP to start the motor.
  • Stop: Press the “[Off/Reset]” key on the LCP to stop the motor. This key can also be used to reset alarms in alarm mode.

Panel Frequency Speed Adjustment Settings

To achieve panel-based frequency speed adjustment, the following parameters need to be set:

  • 3-02 Minimum Reference Value: Sets the minimum allowable frequency reference value.
  • 3-03 Maximum Reference Value: Sets the maximum allowable frequency reference value.
  • 3-10 Preset Reference Value: Used to set one or more preset frequency reference values, selected via keys on the LCP.
FC-101 Side View

Manual Adjustment of Voltage/Frequency Ratio Parameters

To manually adjust the voltage/frequency (V/F) ratio curve, the following parameters need to be set:

  • 1-01 Motor Control Principle: Select [0] U/f control.
  • 1-55 U/f Characteristic – U: Set corresponding voltage values for different frequency points.
  • 1-56 U/f Characteristic – F: Define the frequency points in the V/F characteristic curve.

Inverter Initialization Procedure

Initializing the inverter restores its parameters to default settings. There are two initialization methods:

  • Recommended Initialization:
    1. Select parameter 14-22 Operation Mode.
    2. Press the [OK] key, select [2] Initialize, and then press the [OK] key again.
    3. Disconnect the inverter power supply and wait for the display to turn off.
    4. Reconnect the main power supply.
  • Two-Finger Initialization:
    1. Disconnect the inverter power supply.
    2. Simultaneously press and hold the [OK] and [Menu] keys.
    3. Hold the keys for 10 seconds while powering on the inverter.

Password and Parameter Access Restriction Settings

  • 0-60 Main Menu Password: Defines the password for accessing the main menu.
  • 0-61 Extended Menu No Password: Choose between full access, read-only, or no access.

2. Terminal Forward/Reverse Control and External Potentiometer Speed Adjustment

Terminal Forward/Reverse Control Settings

To achieve terminal-based forward/reverse control, the following parameters need to be set:

  • 4-10 Motor Speed Direction: Select [2] Bidirectional to allow both clockwise and counterclockwise rotation.
  • 5-10 Terminal 18 Digital Input: Set to [10] Reverse to control motor reversal.
FC101 standard wiring diagram

External Potentiometer Frequency Speed Adjustment Settings

To achieve external potentiometer-based frequency speed adjustment, the following parameters need to be set, and terminal 53 (analog input) needs to be connected:

  • 3-15 Reference Source 1: Select [1] Analog Input 53.
  • 6-00 Disconnect Timeout Time: Set the timeout time for analog input disconnection.
  • 6-01 Disconnect Timeout Function: Select the function when disconnected, such as lock output or stop.

Explanation of Required Terminal Connections

  • Terminal 18: Connect the digital input signal for reverse control.
  • Terminal 53: Connect the external potentiometer for frequency speed adjustment.
  • Terminal 27: Typically used for start/stop control, specific function needs to be set in parameters.

3. Fault Codes and Troubleshooting

List of Common Fault Codes

  • Alarm 2: Disconnect Fault
  • Alarm 3: No Motor Connected
  • Alarm 4: Main Supply Phase Loss
  • Alarm 13: Overcurrent
  • Alarm 14: Earth Fault
  • Alarm 24: Fan Fault
  • Alarm 30: Motor Phase U Loss
  • Alarm 95: Broken Belt

Fault Meanings Analysis

  • Disconnect Fault: Analog input signal is below the set value.
  • No Motor Connected: No motor is connected to the inverter output terminals.
  • Main Supply Phase Loss: Main power supply has missing phases or unstable voltage.
  • Overcurrent: Motor current exceeds the inverter peak current limit.
  • Earth Fault: Output phase is discharged to earth through motor cables or the motor itself.
  • Fan Fault: Fan is not running or not installed.
  • Motor Phase Loss: One phase is missing between the motor and the inverter.
  • Broken Belt: Torque is below the set value, indicating a possible broken belt.

Troubleshooting Methods

  • Disconnect Fault: Check analog input terminal connections and signal source.
  • No Motor Connected: Check motor connections to the inverter.
  • Main Supply Phase Loss: Check main power supply and voltage stability.
  • Overcurrent: Check motor load and parameter settings to ensure motor compatibility.
  • Earth Fault: Check motor cable and grounding connections.
  • Fan Fault: Check fan resistance and operation.
  • Motor Phase Loss: Check motor connections and cables.
  • Broken Belt: Check the drive system and belt condition.

By following the above settings and troubleshooting methods, users can effectively operate and maintain the Danfoss FC 101 series inverter, ensuring its stable operation and meeting application requirements.

Posted on Leave a comment

User Manual Operation Guide for Inovance GD270 Series Inverter

I. Introduction to Inverter Operation Panel Functions and Parameter Initialization

The Inovance GD270 series inverter is an efficient drive specifically designed for fan and pump applications. Its operation panel features a rich set of functions, facilitating user operation and monitoring. The operation panel mainly includes an LED keyboard for displaying the inverter’s operating status, set frequency, and other parameters, as well as for parameter settings and operational control.

Front image of GD270

Parameter Initialization:

  1. Press the PRG/ESC button to enter the parameter setting group.
  2. Use the up and down buttons to select the parameter group or parameter that needs to be initialized.
  3. Press the DATA/ENT button to enter the next level menu for specific parameter settings.
  4. Set the parameters that need to be initialized to their factory defaults or desired values.
  5. After completing the settings, press the PRG/ESC button to return to the initial interface and save the settings.

Setting Password and Parameter Access Restrictions:

  1. Press the PRG/ESC button to enter the parameter setting group, and use the up and down buttons to navigate to the P07 Human-Machine Interface group.
  2. Press the DATA/ENT button to enter the next level menu, and use the up and down buttons to navigate to P07.00 User Password (if it’s already set, it doesn’t need adjustment).
  3. Press the DATA/ENT button to enter the parameter, and use the SHIFT button to shift and set the password (e.g., 02021). Press DATA/ENT to confirm.
  4. Press the PRG/ESC button twice to return to the initial interface, and wait for 1 minute for the password to take effect.
  5. Afterward, when pressing the PRG/ESC button to enter the parameter settings again, the user will need to input the previously set password.
  6. To cancel the password, follow the same steps to enter the P07.00 parameter, set the password to 0, and press DATA/ENT.
Side view of GD270

Using Fire Crossing Control Function:

The GD270 series inverter supports a fire crossing control function, which can ensure that the inverter continues to operate for a period of time in case of a fire or other emergencies, allowing for safe shutdown or other emergency measures. The specific setup method requires referring to the inverter’s advanced function settings manual and configuring according to actual conditions.

II. Terminal Forward/Reverse Control and External Potentiometer Frequency Speed Regulation

Terminal Forward/Reverse Control:

  1. Wiring: Connect the multi-function input terminals (such as forward and reverse terminals) to the control signal source (such as buttons, relay outputs, etc.).
  2. Parameter Settings:
    • Enter the parameter setting group and select the control command channel (such as P00.00), setting it to the terminal command channel.
    • Set the corresponding function codes for forward and reverse (such as P00.01, P00.02), corresponding to the forward and reverse terminals, respectively.

External Potentiometer Frequency Speed Regulation:

  1. Wiring: Connect the output terminal (V terminal) of the potentiometer to the analog voltage input terminal of the inverter (such as AI1), and connect the common terminal (GND terminal) of the potentiometer to the common ground terminal of the inverter.
  2. Parameter Settings:
    • Enter the parameter setting group and select the frequency setting selection (such as P01.00), setting it to external terminal given.
    • Set the parameters corresponding to the analog voltage input (such as P01.01), selecting the AI1 terminal.
    • Adjust other relevant parameters as needed, such as the analog voltage input range and frequency upper limit.
GD270标准配线图

III. Fault Codes and Handling Methods

The GD270 series inverter’s fault code system is quite comprehensive, covering numerous potential issues. The following lists some common fault codes, their meanings, and handling methods:

  1. OL (Overload): Indicates that the inverter’s output current exceeds the rated current. Handling methods include checking if the load is too heavy, if the motor is jammed, if the parameter settings are reasonable, etc.
  2. E7 (Encoder Signal Loss): Indicates that the inverter has not received an encoder signal. Handling methods include checking if the encoder connection is good, if the encoder is damaged, etc.
  3. E8 (Fan Fault): Indicates that the inverter’s internal fan has failed. Handling methods include checking if the fan is operating normally, if the fan connection is good, etc.
  4. OC (Overcurrent): Indicates that the inverter’s output current exceeds the allowable value. Handling methods include checking if the load is too heavy, if the motor is jammed, if the power supply voltage is too high or too low, etc.

For other fault codes not explicitly stated, such as 5P1, further technical support or detailed user manuals may be required for interpretation. When handling faults, it is essential to understand the inverter’s various parameter settings and operating status to accurately diagnose the fault cause and take appropriate measures.

IV. Conclusion

The Inovance GD270 series inverter is a powerful and easy-to-operate product. Through this guide, users can better understand the inverter’s operation panel functions, parameter setting methods, terminal wiring and parameter configuration, as well as fault code handling and other aspects. In practical applications, users should choose appropriate control methods, parameter settings, and fault handling methods based on specific conditions to ensure the inverter’s normal operation and efficient energy saving. At the same time, it is recommended that users regularly consult the inverter’s user manual and related technical documents to obtain the latest product information and technical support.

Posted on Leave a comment

HOLIP Inverter HLP-A Series User Manual Operation Guide

I. Introduction to Operation Panel Functions and Parameter Settings

HLP-A Front View

The HOLIP Inverter HLP-A series boasts a comprehensive operation panel that allows users to perform parameter settings, monitor operating status, and diagnose faults. The operation panel primarily includes a display screen, directional keys, set keys, run keys, stop keys, and other functional keys.

Setting and Resetting Passwords

To protect against unauthorized modification of inverter parameters, the HLP-A series supports password protection. Users can enable password protection by setting parameter CD010 to 1, at which point all parameters except CD010 become unmodifiable. To reset the password, simply set CD010 back to 0.

Locking Parameters

To prevent non-maintenance personnel from accidentally modifying parameters, users can lock all parameters except CD010 by setting CD010 to 1. Once locked, only the correct password (set through parameter CD011) can unlock the parameters for modification.

HLP-A Side View

Initializing Parameters

When it is necessary to restore the inverter to its factory settings, users can set parameter CD011 to 08 and then press the run and stop keys simultaneously. The inverter will automatically restart and revert to its factory settings.

II. Terminal Forward/Reverse Control and External Potentiometer Frequency Adjustment

Terminal Forward/Reverse Control

HLP-A Operation Panel Function Diagram

The HLP-A series inverter supports forward/reverse control via external terminals. Users need to set the multi-function input terminal FOR to forward (parameter CD050=02) and REV to reverse (parameter CD051=03). Then, by controlling the on/off state of these terminals with external switches, motor forward/reverse control can be achieved.

External Potentiometer Frequency Adjustment

External potentiometer speed control is a commonly used method for variable frequency speed control. Users need to set the inverter’s operation command source to external terminals (parameter CD033=1) and the operation frequency source to external analog (parameter CD034=1). Connect the potentiometer’s center tap to the VI terminal and its ends to the +10V and ACM terminals, respectively. By adjusting the potentiometer’s resistance, the inverter’s output frequency can be changed, thereby achieving motor speed control.

HLP-A Basic Wiring Diagram

III. Fault Codes and Solutions

The HLP-A series inverter features comprehensive fault protection functions. When a fault occurs, the inverter will display the corresponding fault code. Below are some common fault codes, their meanings, and solutions:

E.OC.A (Overcurrent During Acceleration)

Meaning: The inverter experiences overcurrent during acceleration.

Solution: Check for short circuits or partial short circuits in the motor, and ensure good insulation of output wires; extend the acceleration time; check the inverter configuration for reasonableness and increase the inverter capacity if necessary; reduce the torque boost setting.

E.GF.S (Ground Fault)

Meaning: The inverter output is short-circuited to ground.

Solution: Check for short circuits in motor connections and ensure good insulation of output wires; if the fault cannot be resolved, contact the manufacturer for repair.

E.OU.S (Overvoltage During Stopping)

Meaning: The inverter experiences overvoltage during stopping.

Solution: Extend the deceleration time or install a braking resistor; improve the grid voltage quality and check for sudden voltage fluctuations.

E.OL.A (Inverter Overload)

Meaning: The inverter is overloaded.

Solution: Check if the inverter capacity is too small and increase it if necessary; check for stuck mechanical loads; reset the V/F curve.

E.OT.A (Motor Overtorque)

Meaning: The motor experiences overtorque.

Solution: Check for fluctuations in mechanical loads; check if the motor configuration is too small; check for deterioration in motor insulation due to overheating; check for significant voltage fluctuations; check for phase loss; check for increased mechanical loads.

IV. Conclusion

The HOLIP Inverter HLP-A series user manual provides users with detailed operation guides and fault solutions. By understanding the operation panel functions, mastering terminal control and potentiometer speed adjustment methods, and being familiar with fault code meanings and solutions, users can better utilize and maintain the inverter, ensuring its stable operation and extended service life. In practical applications, users should strictly follow the instructions in the manual for operation and maintenance to ensure the performance and safety of the inverter.

Posted on Leave a comment

V&T V6-H Inverter User Manual Guide and Solution to E.FAL Fault

I. Introduction to the V&T V6-H Inverter Operation Panel Functions

E.FAL

1.1 Overview of Operation Panel Functions

The V&T V6-H inverter is equipped with an intuitive and user-friendly operation panel, providing convenient control and monitoring of the inverter’s operations. The operation panel features various buttons and indicators that allow users to perform various tasks such as setting parameters, monitoring operational status, and troubleshooting faults.

1.2 Setting and Resetting Passwords

Setting a Password:

  1. Enter the Password Function Code: Press the PRG button to enter the menu, and navigate to the password function code (P0.00).
  2. Set the Password: Enter the desired four-digit password and confirm it by pressing the PRG button again. The display will show “P.Set” indicating that the password has been successfully set.

Resetting a Password:

  1. Enter the Password Function Code: Press the PRG button to enter the menu, and navigate to the password function code (P0.00).
  2. Enter the Current Password: Enter the current password.
  3. Clear the Password: Set the password to “0000” and confirm by pressing the PRG button twice. The display will show “P.Clr” indicating that the password has been successfully reset.
V6-h standard wiring diagram

1.3 Setting Parameter Viewing Levels

The V6-H inverter provides different menu modes to control the visibility of parameters, allowing users to customize the level of access based on their needs.

Menu Modes:

  • Basic Menu Mode (P0.02 = 0): Displays all parameters.
  • Quick Menu Mode (P0.02 = 1): Displays only commonly used parameters, ideal for quick setup.
  • Non-Factory Default Menu Mode (P0.02 = 2): Displays only parameters that have been changed from their factory defaults.
  • Recent Changes Menu Mode (P0.02 = 3): Displays the last 10 parameters that have been changed.

To change the menu mode, navigate to the function code P0.02, select the desired menu mode, and confirm by pressing the PRG button.

1.4 Restoring Factory Defaults

Restoring the inverter to its factory default settings can be useful when troubleshooting or resetting the inverter to its initial configuration.

Steps to Restore Factory Defaults:

  1. Enter the Function Code for Restoring Defaults: Navigate to the function code P0.01.
  2. Select the Restore Option: Set P0.01 to “2” to restore all parameters (except motor parameters) to their factory defaults. Alternatively, set P0.01 to “5” to restore all parameters, including those in the reserved areas.
  3. Confirm the Operation: Press the PRG button to confirm the setting. The inverter will then restart and load the factory default parameters.
V6-H

1.5 Setting the Maximum Frequency to 3000Hz

The V6-H inverter supports a maximum output frequency of up to 3000Hz, making it suitable for applications requiring high-speed motor control.

Steps to Set the Maximum Frequency:

  1. Enter the Basic Function Parameters: Navigate to the function code P0.11.
  2. Set the Maximum Output Frequency: Enter “3000” and confirm by pressing the PRG button. This sets the maximum output frequency of the inverter to 3000Hz.

II. Implementing Terminal Forward/Reverse Control

The V&T V6-H inverter provides multiple methods for controlling the direction of rotation of the motor, including through terminal inputs. This section describes how to set up terminal forward/reverse control.

2.1 Terminal Configuration for Forward/Reverse Control

To control the motor’s direction of rotation using terminal inputs, the inverter’s control terminals must be properly configured.

Steps to Configure Terminal Forward/Reverse Control:

  1. Identify the Forward and Reverse Terminals: Typically, the forward and reverse terminals are labeled as FWD and REV, respectively.
  2. Set the Terminal Function: Navigate to the function codes P5.00 to P5.06 (corresponding to terminals X1 to X7) in the multi-function input parameters (P5 group). Set the desired terminal (e.g., X1) to function “9” (forward/reverse control).
  3. Connect the Terminals: Connect the forward and reverse control signals from the external control system to the corresponding terminals on the inverter.
  4. Configure the Run Command Source: Ensure that the run command source is set to terminal control (P0.06 = 1). This allows the inverter to respond to the forward and reverse control signals from the terminals.

2.2 Operating the Inverter in Forward/Reverse Mode

Once the terminal configuration is complete, the inverter can be operated in forward/reverse mode by controlling the signals applied to the forward and reverse terminals.

Operating the Inverter:

  • Forward Rotation: Apply a signal to the FWD terminal to start the motor in the forward direction.
  • Reverse Rotation: Apply a signal to the REV terminal to start the motor in the reverse direction.
  • Stopping the Motor: Remove the signal from both the FWD and REV terminals to stop the motor.

By following these steps, users can easily configure and operate the V&T V6-H inverter for terminal forward/reverse control, enabling precise motor control in a wide range of applications.

III. Solution to E.FAL Fault

The E.FAL fault code on the V&T V6-H inverter indicates a problem with the fan, specifically a fan alarm. This fault can occur due to various reasons such as fan malfunction, overheating, or wiring issues.

3.1 Troubleshooting Steps for E.FAL Fault

Steps to Troubleshoot and Resolve E.FAL Fault:

  1. Check the Fan Operation: Visually inspect the inverter’s cooling fan to ensure it is spinning properly. If the fan is not operating, it may need to be replaced.
  2. Check the Fan Wiring: Verify that the fan wiring is correct and free of damage. Loose or damaged wires can prevent the fan from receiving power.
  3. Check the Fan Sensor: The inverter may have a sensor to monitor fan operation. Ensure that the sensor is functioning correctly and not obstructed.
  4. Environmental Conditions: Consider the ambient temperature and ensure that the inverter is not overheating due to poor ventilation or high ambient temperatures.
  5. Reset the Inverter: If no issues are found with the fan or wiring, try resetting the inverter by turning it off and on again. This may clear the fault code if it was caused by a temporary issue.

3.2 Preventive Measures

To prevent future occurrences of the E.FAL fault, consider the following preventive measures:

  • Regular Maintenance: Schedule regular maintenance checks to inspect the fan and other cooling components.
  • Cleanliness: Keep the inverter and its surroundings clean to prevent dust and debris from obstructing the fan or cooling system.
  • Ventilation: Ensure adequate ventilation around the inverter to prevent overheating.
  • Monitoring: Use the inverter’s monitoring features to keep track of operating temperatures and fan status.

By following these guidelines and troubleshooting steps, users can effectively use the V&T V6-H inverter’s operation panel, configure terminal forward/reverse control, and resolve the E.FAL fault when it occurs.

Posted on Leave a comment

Analysis and Repair Guide for ERR14 Fault on Botten A900 Inverter

The ERR14 fault displayed on the Botten A900 inverter indicates a specific issue that must be analyzed and resolved for proper operation. This guide will cover the meaning of this fault, potential causes, and detailed repair methods, including electronic circuit analysis.

ERR14

1. Understanding the ERR14 Fault Code

The ERR14 fault in the Botten A900 inverter typically relates to a parameter mismatch, EEPROM error, or data storage issue. This error occurs when the inverter detects inconsistencies or corruptions in the stored data or parameters used for its operation.

Key Meaning of ERR14

  • EEPROM Error: The EEPROM (Electrically Erasable Programmable Read-Only Memory) is responsible for storing key operational parameters. If the EEPROM fails to save or retrieve data correctly, the ERR14 fault is triggered.
  • Parameter Mismatch: If parameters stored in the EEPROM do not match the expected operational values (due to manual tampering, firmware updates, or memory corruption), this error is displayed.

Actual working diagram of A900

2. Possible Causes of ERR14

To repair this fault, it’s essential to identify the root cause. Below are some potential reasons:

a. Software/Parameter Issues

  1. Incorrect parameter input or corruption during setup.
  2. Power interruption during parameter saving or initialization.
  3. Firmware update failure, leading to corrupted or mismatched data.
  4. Overwriting of EEPROM memory due to repeated write cycles.

b. Hardware Issues

  1. EEPROM Failure: The EEPROM chip may be damaged or unable to retain data properly.
  2. PCB Track Damage: Faulty PCB tracks or poor soldering can cause inconsistent signals between the EEPROM and the microcontroller.
  3. Voltage Instability: Power supply fluctuations may damage or temporarily disrupt the EEPROM’s ability to write and read data.
  4. Microcontroller Fault: The main control IC may fail to communicate correctly with the EEPROM.

c. External Factors

  1. High-temperature operation leading to degradation of electronic components.
  2. Environmental factors such as humidity causing corrosion on the PCB.
  3. Electrostatic discharge (ESD) damage to sensitive components during maintenance.

A900 label

3. Steps to Diagnose ERR14

Before proceeding with repair, a step-by-step diagnosis is crucial:

a. Preliminary Checks

  1. Reset the Inverter:
    • Press the STOP/RESET button.
    • Turn off the power for 5-10 minutes to allow a complete reset.
    • Power on the inverter and observe if the ERR14 fault persists.
  2. Restore Factory Parameters:
    • Access parameter P0-00 and set it to 1 to restore default values.
    • If the fault clears, it indicates a parameter corruption issue.

b. Advanced Diagnostics

  1. Check Power Supply:
    • Measure the DC bus voltage and ensure stability.
    • Inspect the power supply capacitors for bulging or leakage.
  2. EEPROM Testing:
    • Locate the EEPROM chip on the main PCB (often marked as 24Cxx series).
    • Use an oscilloscope to verify data signal integrity on the EEPROM pins during read/write operations.
    • Replace the EEPROM if abnormal signals or communication failures are detected.
  3. Microcontroller Testing:
    • Verify the connections between the microcontroller and EEPROM.
    • Inspect for loose solder joints or damaged tracks using a magnifying glass.
  4. Environmental Inspection:
    • Examine the PCB for signs of corrosion or contamination.
    • Clean the board using isopropyl alcohol and a soft brush if necessary.

4. Repair Methods for ERR14

Based on the diagnosis, apply the following repair methods:

a. Software/Parameter Repairs

  1. Firmware Reinstallation:
    • Obtain the latest firmware version from the manufacturer.
    • Use a USB or serial communication tool to flash the inverter’s firmware.
    • Reinitialize parameters after installation.
  2. EEPROM Reset:
    • Replace parameter settings with factory defaults (via P0-00).
    • If this does not work, proceed to hardware repairs.

b. Hardware Repairs

  1. EEPROM Replacement:
    • Desolder the faulty EEPROM chip using a hot air rework station.
    • Replace it with a new chip of the same model.
    • Reprogram the EEPROM with default parameters if required.
  2. Microcontroller and Signal Line Repair:
    • Check for continuity between the EEPROM and the microcontroller using a multimeter.
    • Reflow solder joints on the microcontroller and EEPROM to fix potential cold joints.
  3. PCB and Power Circuit Repair:
    • Inspect the voltage regulators and capacitors on the PCB.
    • Replace any damaged components to ensure stable power supply to the EEPROM and other ICs.

c. Preventive Maintenance

  1. Environmental Protection:
    • Apply conformal coating to the PCB to protect against moisture and dust.
    • Ensure the inverter is installed in a well-ventilated area to prevent overheating.
  2. Regular Parameter Backups:
    • Periodically back up parameters to an external storage device or memory module to reduce recovery time in case of future errors.

5. Summary

The ERR14 fault on the Botten A900 inverter is primarily related to EEPROM or parameter inconsistencies, and it requires a systematic approach for resolution. By following the detailed diagnostic and repair steps provided, you can efficiently identify and rectify the root cause. Below is a concise summary:

  1. Perform basic resets and factory parameter initialization.
  2. Test the EEPROM and microcontroller connections for hardware integrity.
  3. Replace or reprogram faulty components if necessary.
  4. Implement preventive measures to minimize future occurrences.

With proper repair and maintenance, the Botten A900 inverter can continue to operate reliably in industrial environments.

Posted on Leave a comment

LS Inverter SV-iGxA Series User Manual Usage Guide

I. Introduction to the Operation Panel Functions and Parameter Settings

Operation Panel Functions

The LS Inverter SV-iGxA series features an intuitive operation panel that includes RUN, STOP/RESET, up and down arrow keys, as well as a confirmation key. The panel’s 7-segment LED display provides clear visual feedback on operational data and parameter settings. Here’s a detailed look at the functions of the operation panel:

  • RUN Key: Starts the motor when pressed.
  • STOP/RESET Key: Stops the motor during operation and resets fault conditions when pressed after a fault occurs.
  • Arrow Keys: The up and down arrow keys are used to navigate through parameters and adjust their values.
  • Confirmation Key: Confirms parameter settings and saves changes.
  • 7-Segment LED Display: Shows operational data such as output frequency, output current, and fault codes.
SV-IGXA main circuit wiring diagram

Parameter Initialization

To initialize the parameters to their factory default settings, follow these steps:

  1. Navigate to Parameter H93: Use the arrow keys to select parameter H93 (Parameter Initialization) in the function group 2.
  2. Set Initialization Value: Press the confirmation key to enter the setting, then use the arrow keys to select the desired initialization level (e.g., 1 for initializing all parameter groups).
  3. Confirm Initialization: Press the confirmation key again to save the setting and initialize the parameters.

Reading, Writing, and Copying Parameters

The SV-iGxA series supports reading and writing parameters using a remote panel or communication interface.

  • Reading Parameters:
    1. Navigate to parameter H91 (Parameter Read) in the function group 2.
    2. Press the confirmation key to initiate the parameter read process.
    3. Follow the prompts on the remote panel or software interface to complete the read operation.
  • Writing Parameters:
    1. Navigate to parameter H92 (Parameter Write) in the function group 2.
    2. Press the confirmation key to initiate the parameter write process.
    3. Follow the prompts on the remote panel or software interface to upload the new parameter settings to the inverter.
SV-IGXA Terminal Wiring Diagram

Setting a Password and Locking Parameters

To enhance security, the SV-iGxA series allows users to set a password and lock specific parameters.

  • Registering a Password:
    1. Navigate to parameter H94 (Password Registration) in the function group 2.
    2. Press the confirmation key to enter the setting.
    3. Use the arrow keys to input the desired password (in hexadecimal format).
    4. Press the confirmation key to save the password.
  • Locking Parameters:
    1. Navigate to parameter H95 (Parameter Lock) in the function group 2.
    2. Press the confirmation key to enter the setting.
    3. Use the arrow keys to select the desired lock level (e.g., locking all parameters by setting H95 to 0xFFFF).
    4. Press the confirmation key to save the setting and lock the parameters.

II. Terminal Control and Potentiometer Speed Regulation

Terminal Forward/Reverse Control

To achieve forward/reverse control via terminal inputs, the following parameters need to be configured:

  • drv (Drive Mode): Set to 1 to enable terminal control.
  • drC (Motor Rotation Direction Selection): Select the desired rotation direction (F for forward, r for reverse).
  • I17-I18 (Multi-Function Input Terminal Definitions): Assign the FX (forward) and RX (reverse) commands to specific terminals (e.g., P1 for FX and P2 for RX).

Required Wiring:

  • FX Terminal: Connect to a normally open (NO) contact to start the motor in the forward direction.
  • RX Terminal: Connect to a normally open (NO) contact to start the motor in the reverse direction.
  • CM (Common) Terminal: Provide a common ground connection for all input terminals.

Potentiometer Speed Regulation

For speed regulation using a potentiometer, the following parameters need to be configured:

  • Frq (Frequency Mode): Set to 3 to enable potentiometer input for frequency control.
  • I6-I10 (V1 Input Parameters): Configure the voltage range and corresponding frequency for the potentiometer input.
    • I7 (V1 Input Minimum Voltage): Set to the minimum voltage output by the potentiometer.
    • I8 (V1 Input Minimum Frequency): Set the frequency corresponding to the minimum voltage.
    • I9 (V1 Input Maximum Voltage): Set to the maximum voltage output by the potentiometer.
    • I10 (V1 Input Maximum Frequency): Set the frequency corresponding to the maximum voltage.

Required Wiring:

  • V1 Terminal: Connect to the output of the potentiometer.
  • CM Terminal: Provide a common ground connection for the V1 terminal.
  • 10V Terminal (if applicable): Provide a 10V reference voltage for the potentiometer (not required for potentiometers with built-in reference voltage).

By configuring the above parameters and wiring the terminals correctly, the SV-iGxA series inverter can be easily controlled via external inputs for forward/reverse operation and speed regulation using a potentiometer.