Posted on Leave a comment

​User Guide for Fuling VFD BD330 Series Manual

Operation Panel Key Descriptions:

Functional description of Fuling inverter BD330 operation panel
  • PRGM/ESC: Program setting and exit key. PRGM is used to enter programming mode or set parameters, while ESC is used to exit the current setting or return to the previous menu.
  • FUNCTION/DATA: Function selection and data key. FUNCTION is used to enter the function selection interface, and DATA is used to modify data values during parameter setting.
  • FORWARD/REVERSE: Forward and reverse control key. Controls the forward or reverse rotation of the motor.
  • JOG/>>: Jog and page turning key. JOG is used for jog control, and >> may be used for page turning or increasing parameter values (specific functions may vary depending on the model).
  • RUN: Run key. Controls the startup of the VFD.
  • STOP/RST: Stop and reset key. STOP is used to stop the VFD operation, and RST is used to reset the VFD and clear fault states.
  • UP/DOWN: Up and down adjustment key. Used to increase or decrease values during parameter setting.

Terminal Start/Stop and Potentiometer Debugging Wiring Instructions:

Terminal Start/Stop:

  • Parameter Setting: Ensure parameter F0.02 is set to 1, selecting terminal control mode.
  • Wiring Instructions:
    • Connect the external start signal to the S1 terminal of the VFD.
    • Short-circuit the S1 terminal with the common terminal DCM to send a start signal, causing the VFD to begin operation.
    • Disconnect the short-circuit between S1 and DCM to send a stop signal, causing the VFD to stop operation.

Potentiometer Debugging:

  • Parameter Setting: Ensure parameter F0.03 is set to 1, selecting external potentiometer speed adjustment mode.
  • Wiring Instructions:
    • Connect the center tap (sliding contact) of the potentiometer to the AVI terminal of the VFD.
    • Connect the two ends of the potentiometer to the 10V (or similar positive power supply) and ACM (or similar common terminal) of the VFD, respectively.
    • Adjust the position of the potentiometer to change the voltage value of the AVI terminal, thereby controlling the output frequency of the VFD.
Fuling inverter BD330 wiring diagram

Fault Code Analysis and Solutions:

Fault Codes:

  • E001: DC bus fault. Possible causes include abnormal input power, faulty bus capacitors, etc. Solution: Check if the power input is normal, inspect the bus capacitors for damage, and replace if necessary.
  • E002: Acceleration overvoltage. Possible causes include excessively short acceleration time, sudden load changes, etc. Solution: Adjust the acceleration time and check for load stability.
  • E003: Constant speed overvoltage. Similar to E002 but occurs during constant speed operation. Solution is the same.
  • E004: Acceleration overcurrent. Possible causes include motor stall, excessive load, etc. Solution: Inspect the motor and load conditions, reduce the load, or optimize motor operating conditions.
  • E005: Deceleration overcurrent. Possible causes include excessively short deceleration time, large load inertia, etc. Solution: Adjust the deceleration time and consider using a braking unit and braking resistor.

Please note that the above content is based on the information you provided. During actual operation, please refer to the VFD manual and related materials. If you have any questions, please contact Longi Electromechanical’s technical support or professional maintenance personnel promptly.

Posted on Leave a comment

ACS850 Inverter User’s Manual Overview

I. Introduction to ACS850 Inverter Features

The ABB ACS850 series inverter is a high-performance, multi-functional drive device designed specifically for industrial applications, supporting various motor types. Its key features include:

  • Extensive Power Range: Covering from 0.37 kW to 560 kW, catering to the needs of small to large-scale industrial applications.
  • High-Precision Control: Utilizing advanced control algorithms to provide precise motor control, including Direct Torque Control (DTC).
  • Modular Design: Easy to configure and expand, supporting multiple communication protocols and fieldbus interfaces.
  • Comprehensive Protection: Built-in multiple protection mechanisms to ensure stable system operation, including overcurrent, overload, and short-circuit protection.
  • User-Friendly Interface: Equipped with an intuitive control panel for easy operation and monitoring.
ACS850 inverter control framework diagram

II. Operating Instructions for ACS850 Inverter Control Panel

The control panel of the ACS850 inverter typically includes an LCD display, multiple function keys, and directional keys. While the specific key names may vary depending on the model or version of the control panel, the basic operation logic remains similar. The following are general instructions:

  • Menu Navigation: Use directional keys to move up, down, left, or right in the menu to select the desired function or parameter.
  • Parameter Setting: Enter the parameter setting menu, use directional keys to select specific parameters, and then adjust them using data increase/decrease keys.
  • Operation Control: The panel usually has clear control keys for start, stop, forward, reverse, etc., for direct control of the inverter’s operating status.
  • Display Switching: Some control panels may be equipped with dedicated keys to switch between different display modes or view alarm information.
Default control connection for ACS850 inverter factory macro

III. Configuration Guide for Terminal Control Mode

When using terminal control mode, it is necessary to select the appropriate macro configuration and set relevant parameters based on application requirements. The following are general steps:

  • Select Macro Configuration: Based on the application type (e.g., fan/pump, compressor, etc.), select the suitable macro configuration in the inverter’s parameter settings. This typically involves presetting a series of related parameters to suit specific application needs.
  • Configure Input/Output Terminals:
    • Connect external control signals (e.g., start, stop, speed setting, etc.) to the corresponding input terminals.
    • Configure output terminals as needed (e.g., fault output, operating status output, etc.).
  • Set Control Parameters:
    • Adjust relevant control parameters according to the selected macro configuration, such as acceleration time, deceleration time, PID controller parameters, etc.
    • Ensure that AI1 (or other analog input terminals) is correctly configured as the speed setting input, and set appropriate scaling factors and offsets.
  • Save Settings and Test:
    • After saving all settings, test the inverter to ensure that all control signals are working as expected.
    • Check and eliminate any potential wiring errors or incorrect parameter configurations.

IV. Fault Code Analysis and Troubleshooting

The ACS850 inverter features a fault diagnosis function that displays corresponding fault codes when a fault occurs. Based on the fault code table (usually located in a specific chapter of the manual), users can quickly identify the problem and take appropriate measures. The following are some common fault codes and their troubleshooting suggestions:

  • 0001: Overcurrent fault. Check the motor, cables, and inverter output for normality; adjust the load or increase overload protection settings.
  • 0002: DC link overvoltage fault. Check the stability of the power supply voltage; consider increasing deceleration time or installing a braking resistor.
  • 0004: Motor short-circuit fault. Check the motor windings for short-circuits; replace the motor if necessary.

Note: The above steps and suggestions are based on a general description of the ACS850 series inverter. When performing specific operations, please refer to the ACS850 firmware manual and follow the official guidance provided by ABB. For any questions or issues, it is recommended to contact Longi Electromechanical Support for professional assistance.


Posted on Leave a comment

Fault Analysis and Resolution of ‘INH’ Alarm on Nidec Unidrive M300 and HS30 Servo Drive

Analysis and Solution for “INH” Alarm in Nidec Unidrive M300 and HS30 Series Servo Drive

Fault Analysis

INH' Alarm on Nidec Unidrive M300 and HS30 Servo Drive
  • Safety Input Trigger:
    • The Unidrive M300 and HS30 supports various safety functions, such as Safe Torque Off (STO). Activation of safety inputs, like STO signals, will place the drive in an inhibit state, preventing unintended motor rotation.
  • Control Parameter Settings:
    • Parameter P06.015 (Drive Enable) is one of the key control parameters, used to enable or disable drive output. When P06.015 is set to 0 (disabled), the drive will be in an inhibit state.
  • External Control Signals:
    • Incorrect configuration or faults in other external control signals, such as remote control signals, may also cause the drive to enter an inhibit state.
  • Drive Faults:
    • Although uncommon, internal drive faults or software issues may also result in “INH” alarms.

Solution Methods

Detailed description of STO function
  • Check Safety Inputs:
    • Confirm that all safety inputs (e.g., STO signals) are correctly connected and in the desired state. Check if external safety devices (e.g., emergency stop buttons) have been reset.
  • Verify Control Parameters:
    • Check the setting of parameter P06.015 through the drive’s Human Machine Interface (HMI) or configuration software. Ensure the parameter is set to 1 (enabled) to allow drive output.
  • Inspect External Control Signals:
    • Verify the wiring and logic of all external control signals (e.g., remote control signals). Ensure no erroneous signals are causing the drive to enter an inhibit state.
  • Restart the Drive:
    • After confirming all configurations are correct, attempt to restart the drive. Sometimes a simple restart can resolve issues due to software hangs or communication errors.
  • View Fault Records:
    • Use the drive’s fault diagnosis function to check for any other related fault records. These records may provide additional clues leading to the “INH” alarm.
  • Contact Technical Support:
    • If the above steps fail to resolve the issue, it is recommended to contact Nidec’s technical support team for further assistance.

Special Attention to Parameter P06.015

M300 servo wiring diagram and STO external wiring
  • Pre-modification Confirmation:
    • Before modifying P06.015 or any critical control parameters, ensure an understanding of the specific role and impact of the parameter, and consult relevant documentation or technical support.
  • Safe Operation:
    • Before making any modifications, ensure the drive and motor are in a safe state to avoid unexpected start-ups or damage to the equipment.

By following these steps, you should be able to diagnose and resolve the “INH” alarm issue on the Unidrive M300 servo drive. If the problem persists, consider seeking professional assistance from Longi Electromechanical.

Posted on Leave a comment

Theta VFD T8 Series User Guide

I. Procedure for Viewing and Modifying Function Codes on the T8 Series VFD Operator Panel

  1. Starting the Operator Panel:
    • After powering on the VFD, press the power button (labeled “POWER” or similar symbol) on the operator panel to activate it.
  2. Viewing and Modifying Function Codes:
    • Use the directional keys (↑↓←→) on the operator panel to select the desired function code for viewing or modification.
    • Press the “ENTER” key to enter edit mode, where you can input new parameter values using the numeric keys or view the current values.
    • After making changes, press “ENTER” again to confirm the modifications and exit edit mode.
    • Note: Access to some advanced function codes may require entering a password.
  3. Parameter Structure and Status Parameter Review and Setting:
    • VFD parameters are typically grouped, such as motor parameters (P0 group), control parameters (P1 group), and protection parameters (P2 group).
    • To review specific parameters, refer to the parameter table in the manual to find the corresponding parameter number (e.g., P0.01, P1.05) and parameter description.
    • Status parameters (e.g., current frequency, current, voltage) can be directly viewed through specific function codes, providing real-time insights into the VFD’s operating status.
Operation panel buttons and display instructions diagram

II. Explanation of Control Circuit Terminals and Wiring Methods for the T8 VFD

  1. Explanation of Control Circuit Terminals:
    • FWD/REV (Forward/Reverse Control Terminals): Connect to external buttons or switches to control the VFD’s forward and reverse rotation.
    • RUN/STOP (Run/Stop Control Terminals): Control the VFD’s start and stop functions.
    • AI1/AI2 (Analog Input Terminals): Receive analog signals from potentiometers, PLCs, etc., for frequency adjustment.
    • FAULT (Fault Output Terminal): Outputs a signal to external devices when the VFD detects a fault.
    • RUN (Run Indicator Light): Illuminates when the VFD is in the running state.
  2. Wiring Methods for the Control Circuit:
    • Connect the corresponding control signal wires to the designated terminals based on actual control requirements.
    • When using terminal start and potentiometer adjustment, ensure:
      • Analog input parameters are set correctly, including input type (voltage/current) and range.
      • The frequency setting method is selected as “Analog Input.”
      • Forward/reverse control parameters are set according to actual needs.

III. Explanation and Resolution of VFD Fault Codes

T8 inverter control circuit wiring diagram

Based on the specific instructions in the “Theta VFD T8 Series Manual,” here are some common fault codes and their resolutions:

  • OC (Overcurrent Fault): Check if the motor and load are excessively large, optimize motor parameters or load distribution; inspect motor insulation for integrity.
  • OV (Overvoltage Fault): Verify input voltage stability, use a voltage stabilizer if necessary; inspect power lines for abnormalities.
  • UV (Undervoltage Fault): Check the input power source for normalcy, troubleshoot power supply issues; inspect power lines for poor contact.
  • OH (Overheat Fault): Improve ventilation conditions, reduce ambient temperature; check for blocked heat sinks and clean dust inside the VFD.
  • EF (External Fault): Verify the normalcy of the external fault signal source; inspect the wiring of external devices for secure connections.

Please note that this content is a summary of the user guide based on select sections of the “Theta VFD T8 Series Manual.” Always refer to the original manual for detailed steps, precautions, and any additional information. For questions or further assistance, consult the manual or contact longi VFD’s technical support department.

Posted on Leave a comment

MotiFlex e180 Servo Drive Wiring, Debugging,manual,and Fault Handling Guide

I. Main Circuit Wiring Instructions

  1. Power Supply Wiring
    • The MotiFlex e180 servo drive supports three-phase AC power input, typically ranging from 200V to 480V AC, depending on the selected model.Before wiring, ensure the power supply is switched off and disconnected to avoid the risk of electric shock.
  2. Wiring Steps:
    • Verify that the power supply voltage and frequency meet the drive requirements.
    • Connect the three phases (L1, L2, L3) and ground wire (PE) of the power supply to the drive’s input terminals using appropriately sized cables.
    • Ensure secure cable connections and check that the cable shielding is properly grounded.
  3. Motor Wiring
    • Connect the motor cable to the drive’s motor output terminals (U, V, W), ensuring the motor ground wire (PE) is also properly connected.
    Wiring Steps:
    • Check that the motor model and rated parameters match the drive.
    • Use appropriately sized motor cables to connect the three-phase wires (U, V, W) and ground wire (PE) to the corresponding output terminals of the drive.
    • Tighten the cable connectors to ensure a reliable connection.
MotiFlex e180 servo main circuit wiring diagram

II. Control Circuit Wiring Instructions

  1. I/O Interface Description
    • The MotiFlex e180 provides a rich set of I/O interfaces, including Digital Input (DI), Digital Output (DO), Analog Input (AI), and Analog Output (AO) for communication and control with external devices or controllers.
    • DIs receive switching signals from external devices, such as start, stop, and emergency stop.
    • DOs send control signals to external devices, such as alarm output and motor running status indication.
    • AIs receive analog signals, such as speed setting and position feedback.
    • AOs output analog signals, such as drive current and voltage feedback.
  2. Control Circuit Wiring
    Wiring Steps:
    • Prepare suitable control cables, ensuring that the cable specifications and length meet the requirements.
    • Connect the control cables to the corresponding I/O interfaces according to the drive wiring diagram. Pay attention to distinguishing between inputs and outputs, as well as positive and negative polarity.
    • For digital outputs requiring external power (e.g., relay outputs), ensure that the external power specifications meet the requirements and are correctly wired.
IO Function Description and Control Circuit Wiring Diagram of ABB Server MotiFlex e180

III. Debugging MotiFlex e180 Servo Drive with Mint WorkBench

  1. Installing and Configuring Mint WorkBench
    • Download and install Mint WorkBench software: Obtain the latest version of Mint WorkBench from the ABB official website and follow the installation guide to complete the installation.
    • Connect the drive: Use an Ethernet cable to connect the computer to the MotiFlex e180’s E3 port, and configure the computer’s network adapter to ensure it is in the same subnet as the drive’s IP address.
  2. Starting and Debugging
    • Launch Mint WorkBench, create a new project, and select to connect to the MotiFlex e180 servo drive.
    • Run the debugging wizard: In Mint WorkBench, start the debugging wizard, follow the prompts to input motor and drive parameters, and proceed with automatic adjustment and performance testing.
    • Monitoring and Adjustment: Use the monitoring window to view the drive status in real-time and make manual adjustments as needed to optimize drive performance.
ABB server MotiFlex e180 status display

IV. Fault Code Analysis and Solutions

  • Error Code 10033 (ecSTO_ACTIVE): Indicates that the STO (Safe Torque Off) function is active.
    • Cause: The STO input signal is not energized.
    • Solution: Check the wiring and power supply of the STO input signal to ensure normal operation.
  • Error Code 10015 (Overcurrent Protection): Indicates that the drive has detected an overcurrent condition.
    • Cause: Excessive motor load, motor or cable short circuit, etc.
    • Solution: Inspect motor and cable connections, ensure no short circuits or overloads; adjust the load or reduce the operating speed.
  • Error Code 20006 (Axis Alarm): Indicates abnormal encoder feedback data.
    • Cause: Incorrect encoder wiring, encoder failure, or interference with the feedback signal.
    • Solution: Check encoder wiring, replace faulty encoders, or increase signal shielding measures.

By following these steps, you can effectively debug the MotiFlex e180 servo drive using Mint WorkBench and resolve common fault issues. For further questions, please contact us for a detailed manual or free technical support.

Posted on Leave a comment

Cause Analysis and Solution for FF89 Alarm on ABB VFD ACS800

The ABB ACS800 VFD (Variable Frequency Drive) plays a pivotal role in industrial automation, finding extensive applications across various industrial control systems. However, during operation, it may encounter various alarm messages.

ACS800 VFD panel display fault

Alarm Message: FF89 – MOD CHOKE T (FF89) 09.11 AW 3 bit 13

Cause:

  • Overheating of Reactor in Liquid-Cooled R8i Inverter Module
    The reactor in the liquid-cooled R8i inverter module has exceeded its temperature threshold.

Resolution Steps:

  1. Check the Inverter Fan:
    • Ensure the inverter fan is operating properly and providing sufficient cooling to the reactor.
    • Inspect for any blockages or dirt accumulation that may impede airflow.
  2. Inspect Ambient Temperature:
    • Verify that the ambient temperature surrounding the VFD is within the recommended range.
    • Ensure there are no heat sources in close proximity that could contribute to overheating.
  3. Examine the Liquid Cooling System:
    • Thoroughly check the condition of the liquid cooling system, including pipes, pumps, and radiators.
    • Confirm that the coolant flow rate and temperature are within normal operating parameters.
    • Inspect for leaks or corrosion that could indicate a need for maintenance or replacement.
  4. Review VFD Operation and Configuration:
    • Ensure the VFD is not operating under excessive load conditions that could lead to overheating.
    • Check the VFD’s settings and parameters to verify they are appropriate for the application and load requirements.
  5. Check for Alarms or Warnings in the VFD’s Diagnostic System:
    • Use the VFD’s diagnostic tools or software (such as DriveWindow) to check for any additional alarms or warnings that may provide further insight into the issue.
  6. Service and Maintenance:
    • If the above steps do not resolve the issue, consider scheduling preventive maintenance or contacting ABB support for further assistance.
ACS800 Fault Code Table

By following these resolution steps, you can effectively diagnose and address the FF89 alarm on your ABB ACS800 VFD, ensuring reliable and efficient operation of your industrial automation system.

Posted on Leave a comment

Modifying Power Ratings for ABB ACS800 Series VFD Control Boards

Modifying the power ratings on ABB ACS800 series VFD (Variable Frequency Drive) control boards can be performed following a set of detailed steps, depending on the firmware version of the RDCU (Remote Digital Control Unit) board. This guide outlines the processes for both pre-version 7200 and post-version 7200 RDCU boards.

Pre-Version 7200 RDCU Power Rating Modification Steps

  1. Enter 9903 and set to YES:
    • Access the control panel and navigate to parameter 9903.
    • Set the value to YES to enable modification mode.
  2. Enter 1603 and set to 564:
    • Navigate to parameter 1603 and enter the passcode 564.
    • This unlocks access to parameter groups 112 and 190.
  3. Select XXNONE in 11206:
    • Navigate to parameter 11206 and select XXNONE.
    • This prepares the board for power cycle.
  4. Power Cycle:
    • Turn off the power to the RDCU board.
    • Wait a few seconds and then turn the power back on.
  5. Re-enter 1603 and set to 564 (again):
    • Repeat step 2 to ensure the passcode is active.
  6. Select the Desired Power Rating in 11206:
    • Navigate to parameter 11206 again and select the desired power rating (e.g., 170-3).
  7. Initialize Parameters:
    • Perform any necessary parameter initialization steps as recommended by the manufacturer’s guidelines.
  8. Final Power Cycle:
    • Repeat the power cycle process to ensure the new settings take effect.

Post-Version 7200 RDCU Power Rating Modification Steps

  1. Enter 9903 and set to YES:
    • Same as the pre-version 7200 steps.
  2. Enter 1603 and set to 564:
    • Same as the pre-version 7200 steps.
  3. Select the Desired Power Rating Directly in 11221:
    • Instead of using 11206, navigate to parameter 11221 and directly select the desired power rating (e.g., 11221 = sr170_3).
  4. Re-enter 9903 and set to YES (optional):
    • Depending on the specific firmware, this step may be optional but recommended for confirmation.
  5. Power Cycle:
    • Turn off the power to the RDCU board and then turn it back on.

Notes and Cautions

  • Parameter Ranges: Note that parameters 11219 to 11223 represent different power ratings. Ensure you select the correct one for your application.
  • Normal Usage Caution: Do not modify the settings on a normally operating VFD unless absolutely necessary, as it may result in the loss of important operational parameters.
  • Firmware Differences: Always refer to the latest ABB documentation for your specific firmware version, as steps may vary slightly between versions.
  • Parameter Unlocking: Remember that entering 564 in parameter 1603 unlocks advanced parameters, allowing for the modification of power ratings and other settings.

By following these steps carefully, you can safely modify the power ratings of ABB ACS800 series VFD control boards, ensuring optimal performance and compatibility

Posted on Leave a comment

Operation, Brand,Maintenance, and Troubleshooting of Centrifuges: A Comprehensive Guide

Introduction

A centrifuge is a device that utilizes centrifugal force to separate different components in a mixture. Its working principle is based on Newton’s second law, where the centrifugal force experienced by an object during rotation is proportional to the square of the angular velocity and the radius of rotation, and also proportional to the mass of the object. In a centrifuge, substances are placed on a rotating turntable and accelerated along with it. As the rotation speed increases, the substances experience centrifugal force, leading to their separation into different components. Factors such as the rotation speed, turntable diameter, and turntable material of the centrifuge all influence the magnitude of the centrifugal force and the effectiveness of the separation.

I. Operation Method of the Centrifuge

The operation of a centrifuge generally involves the following steps:

Preparation Stage:

  • Check if the centrifuge is in normal working condition.
  • Prepare necessary centrifuge tubes, turntables, and other accessories.

Loading Samples:

  • Place the substances to be separated into centrifuge tubes.
  • Position the centrifuge tubes on the turntable of the centrifuge, ensuring they are correctly placed and evenly distributed to maintain balance.

Setting Parameters:

  • Set the parameters of the centrifuge, such as rotation speed and centrifugation time, according to the separation requirements and sample characteristics.

Starting the Centrifuge:

  • Press the start button to initiate the centrifuge.

Monitoring the Centrifuge:

  • Monitor the running status of the centrifuge during operation to ensure the centrifugation process proceeds normally.

Stopping the Centrifuge:

  • After centrifugation is complete, press the stop button, halt the centrifuge, and retrieve the separated substances.

II. Common Faults and Troubleshooting Methods for the Centrifuge

The centrifuge may encounter various faults during use. Below are some common faults and their troubleshooting methods:

  • Unbalanced Centrifuge or Uneven Placement of Centrifuge Tubes:
    • Adjust the level of the centrifuge to ensure it is stable.
    • Evenly distribute the centrifuge tubes to avoid imbalance caused by uneven weight distribution.
  • Loose or Damaged Rotor:
    • Check if the rotor is loose or damaged, and replace it if necessary.
  • Loose Screws, Worn Bearings, or Motor Faults:
    • Tighten the screws of the centrifuge.
    • Check for bearing wear and replace if necessary.
    • Check for motor faults and repair or replace if needed.
  • Blocked Oil Filter or Oil Leakage:
    • Inspect the oil filter, oil pipes, and connectors to ensure they are unblocked.
    • Check for oil leakage and repair promptly if found.
  • Power Issues or Damaged Circuit Board:
    • Check if the power plug is properly inserted and the power cord is energized.
    • Check if the fuse is burned out and try replacing it.
    • If the above are normal, the circuit board may be damaged and needs to be returned for repair or replacement.
  • Water Circuit Issues or Damaged Seal Rings:
    • Check if the water circuit is unblocked and the solenoid valve is functioning properly.
    • Inspect the seal rings for damage or impurities and replace if necessary.

III. Maintenance Methods for the Centrifuge

The maintenance of a centrifuge mainly includes the following steps:

  • Cleaning:
    • Regularly clean the centrifuge to remove accumulated dirt and residues, restoring the design dimensions of the cavity.
  • Inspection:
    • Regularly inspect various components of the centrifuge, including feed pipes, drums, spirals, housing, frames, and motors, to ensure they are in normal structure and working condition.
  • Calibration:
    • Regularly calibrate the assembly components of the centrifuge to ensure good dynamic balance.
  • Lubrication:
    • Regularly lubricate the bearings, gears, and other components of the centrifuge to reduce wear and extend service life.
  • Maintenance:
    • Regularly maintain the centrifuge, including replacing worn components and cleaning internal dirt.
  • Fault Diagnosis:
    • Promptly diagnose the cause of any faults in the centrifuge through methods such as listening to sounds, checking the power supply, and viewing fault codes on the display. Seek professional assistance if unable to resolve.

IV. Centrifuge Brands and Models Repaired by Longi Electromechanical Company

  1. Beckman Coulter:
    • Avanti JXN-30
    • Avanti JXN-26
    • Allegra X-30 Series
    • Allegra V-15R
    • Microfuge 20 Series
    • Optima XE/XPN Series (XE/XPN-90, XE/XPN-100, XE/XPN-80)
  2. Thermo Fisher Scientific:
    • Sorvall LYNX 6000
    • Sorvall Legend X1/X1R
    • Sorvall ST 16/ST 16R
    • Sorvall RC 6 Plus
    • Sorvall Evolution RC
    • Sorvall BIOS 16
    • Sorvall WX+ Ultracentrifuge Series (WX Ultra 80, WX Ultra 90, WX Ultra 100)
  3. Eppendorf:
    • 5810/5810 R
    • 5910/5910 R
    • 5424/5424 R
    • 5430/5430 R
    • 5804/5804 R
    • Centrifuge 5920 R
    • Centrifuge 5702/5702 R
  4. Hettich:
    • Rotina 420/420R
    • Rotofix 32A
    • Rotina 380/380R
    • Universal 320/320R
    • EBA 200/200S
    • Mikro 200/200R
  5. Sigma:
    • Sigma 8K
    • Sigma 6-16 KS
    • Sigma 3-30KS
    • Sigma 2-16K
    • Sigma 1-14
    • Sigma 4-5L
    • Sigma 3-18KS
  6. Sorvall:
    • Sorvall RC-5B Plus
    • Sorvall RC 12BP Plus
    • Sorvall Legend XTR/X1R
    • Sorvall MTX 150
    • Sorvall RC-6 Plus
  7. Beckman Optima:
    • Optima MAX-XP
    • Optima MAX-TL
    • Optima XPN/XE
  8. Hitachi:
    • Himac CR21GIII
    • Himac CS150FNX
    • Himac CR30NX
  9. HERMLE:
    • Z36HK
    • Z446
    • Z326
    • Z216MK
  10. Thermo Sorvall:
    • Thermo Sorvall LYNX 4000/6000
    • Thermo Sorvall WX 80/90/100 Ultra Series
  11. KENDRO (Acquired by Thermo Fisher):
    • High-Efficiency Centrifuges: Sorvall RC-6 Plus, Sorvall RC-5C Plus, Sorvall RC-3BP Plus
    • Ultrahigh-Speed Centrifuges: WX Ultra 80, WX Ultra 90, WX Ultra 100
    • Benchtop Centrifuges: Heraeus Multifuge X3/X3R, Heraeus Megafuge 8/8R
    • Microcentrifuges: Heraeus Pico 21/Pico 21R, Heraeus Fresco 17/Fresco 17R
    • Multifunctional Centrifuges: Sorvall Legend X1/X1R, Sorvall Legend XT/XTR
  12. Hunan Xiangyi:
    • CH210
    • CHT210R
    • HT150R
    • HT165R
    • HT200
    • HT200R
    • H2050R

Conclusion

Longii Electromechanical Company has nearly 30 years of experience in repairing centrifuges and can quickly repair various instruments. Additionally, we recycle and sell various used centrifuges. Welcome to consult with us.

Posted on Leave a comment

ACS530 VFD 5098 Alarm Fault Analysis and Troubleshooting

ACS530 VFD 5098 Alarm Fault Analysis and Troubleshooting

When working with ABB’s ACS530 series VFDs (Variable Frequency Drives), encountering specific fault alarms such as the 5098 alarm can be a concern. While the ACS530 series manual may not directly mention this alarm code, by referencing the manual of its similar ACS580 series VFDs, also from ABB, we can gain insight into the 5098 alarm and apply that knowledge to troubleshooting the ACS530 series.

Physical picture of ACS530 with fault number 5098

I. Understanding the 5098 Alarm

In the ACS580 series, the 5098 alarm indicates “I/O Communication Lost,” signifying a failure in communication with the standard I/O (Input/Output) devices. This usually occurs when there is an issue with the communication link between the VFD’s I/O terminal board (where analog inputs like AI1 reside) and the main board. Similarly, in the ACS530 series, the 5098 alarm likely indicates a communication issue as well.

II. Possible Causes of the Fault

  1. Power Issues:
    • The 10V or 24V power supply on the I/O terminal board may be abnormal, leading to unstable or failed communication.
    • There may be short circuits, open circuits, or poor connections in the power lines.
  2. Hardware Connection Problems:
    • Connections between the I/O terminal board and the main board may be loose, have cold solder joints, or be corroded.
    • Terminals may have aged due to prolonged use, resulting in poor contact.
  3. Communication Module Failure:
    • The VFD’s I/O communication module may be damaged, preventing proper communication with the I/O terminal board.
  4. Software or Configuration Issues:
    • The VFD’s software configuration may have errors, affecting communication protocols or parameter settings.
    • Despite similarities in design and software between the ACS530 and ACS580 series, subtle differences in configuration may lead to unexpected alarms in the ACS530 under certain conditions.
Physical picture of ABB inverter ACS530

III. Fault Troubleshooting Steps

To address the 5098 alarm in the ACS530 VFD, follow these troubleshooting steps:

  1. Check Power Supplies:
    • Use a multimeter to verify the 10V and 24V power supplies on the I/O terminal board are functioning correctly.
    • Inspect power lines for completeness, shorts, or open circuits.
  2. Inspect Hardware Connections:
    • Disconnect all connections related to the I/O terminal board, reconnect them securely, and ensure they are tight.
    • Examine the connections between the I/O terminal board and the main board for looseness, cold solder joints, or corrosion, and make necessary repairs.
  3. Assess Communication Module:
    • If possible, test replacing the I/O communication module with an identical one to determine if it’s faulty.
  4. Reset and Restart:
    • Attempt to reset the VFD to clear the alarm.
    • If resetting fails, power off the VFD, wait for a while, and then power it back on to eliminate any software-related communication issues.
  5. Contact Technical Support:
    • If none of the above steps resolve the issue, contact ABB’s technical support team or a professional service provider for further diagnosis and repair.

IV. Conclusion

Despite the ACS530 series VFD manual’s lack of direct mention of the 5098 alarm, referencing similar ACS580 series documentation and contextual analysis enables understanding the likely fault type and appropriate troubleshooting methods. In practice, consider all potential causes

Posted on Leave a comment

ACH550 Inverter User Manual: Comprehensive Guide for Installation, Operation, and Maintenance


I. Operating Panel (Control Pad) Usage

1. Overview of Control Pad

The operating panel (control pad) of the ACH550 inverter serves as the primary interface between the user and the inverter, enabling status display, parameter setting, and operation control.

2. Basic Operations

  • Starting and Stopping:
    • Press “HAND” Button: Enters manual mode, allowing adjustment of inverter output frequency via the up and down arrow keys.
    • Press “AUTO” Button: Switches to automatic mode, where inverter operation is controlled by external signals (such as terminal signals or communication signals).
  • Display Mode Switching:
    • Access different display modes (e.g., output mode, parameter mode, assistant mode) through the menu button (MENU) on the control pad.
  • Parameter Setting:
    • In parameter mode, use the up and down arrow keys to select the parameter to modify. Press the edit button (EDIT) to enter the parameter settings, input new values using the numeric keys, and save changes with the save button (SAVE).

3. Assistant Mode

The assistant mode provides guided steps for starting and configuring the inverter, ideal for first-time users or those requiring quick setup.

II. Terminal Starting and Potentiometer Speed Control

1. Terminal Starting Wiring

  1. Connect Main Power: Wire the inverter’s input power to the corresponding terminals (U1, V1, W1).
  2. Connect Motor: Connect motor wires to the inverter’s output terminals (U2, V2, W2).
  3. Control Signal Wiring:
    • Connect the start signal (e.g., DI1) to the inverter’s digital input terminal.
    • If direction control is required, connect the direction signal to the corresponding terminal (e.g., DI2).

2. Potentiometer Speed Control Wiring

  1. Potentiometer Selection: Choose an appropriate rotary or slide potentiometer.
  2. Wiring:
    • Connect the three pins of the potentiometer to the inverter’s analog input terminals (e.g., positive, negative, and signal terminals of AI1).
    • Adjust the potentiometer knob to vary the voltage or current signal input to AI1, thereby controlling the inverter’s output frequency.

3. Parameter Setting

  • Enter parameter mode and select an appropriate macro (e.g., fan macro or general PID macro) that presets parameters suitable for specific applications.
  • Adjust parameters related to start/stop, direction control, and analog inputs based on actual wiring configurations.
Default macro HVAC wiring diagram for ACH550

III. Inverter Fault Code Analysis and Troubleshooting

1. Fault Code Inquiry

Display recent fault codes through the control pad, which correspond to different fault types.

2. Common Fault Codes and Troubleshooting Methods

  • Overcurrent Fault:
    • Cause: Motor overload, motor short circuit, improper parameter settings, etc.
    • Solution: Check motor and load conditions, adjust overload protection parameters, and confirm inverter and motor parameter compatibility.
  • Undervoltage Fault:
    • Cause: Low or fluctuating input power voltage.
    • Solution: Verify power supply voltage stability, increase input filter capacitors, or adjust undervoltage protection thresholds.
  • Overheat Fault:
    • Cause: Poor inverter cooling, high ambient temperature.
    • Solution: Improve inverter cooling conditions, such as installing additional cooling fans or reducing ambient temperature.
  • Communication Fault:
    • Cause: Communication line issues, incorrect communication parameter settings.
    • Solution: Check communication line connections, ensure communication parameter settings match the device configuration.

IV. Precautions

  • Always disconnect inverter power before performing any wiring or parameter adjustments.
  • Observe control pad status indicators and fault codes during operation, promptly addressing potential issues.
  • For complex faults or unsolvable problems, contact ABB technical support or a qualified service