Posted on Leave a comment

Operation Guide for Yaskawa V1000 Series Inverter User Manual

The Yaskawa V1000 series inverter, as a high-performance vector control inverter, is widely used in various industrial drive systems. This article will provide a detailed introduction to the operation panel functions, basic setting methods, common function applications, and fault code analysis of this inverter, helping users better understand and utilize this equipment.

Function diagram of V1000 operation panel

I. Introduction to Operation Panel Functions and Basic Settings

1. Introduction to Operation Panel Functions

The operation panel of the Yaskawa V1000 series inverter integrates rich display and control functions, mainly including the LED operator, LO/RE indicator light, RUN indicator light, etc. Users can perform parameter settings, mode switching, operation monitoring, and other operations through the operation panel.

2. How to Set and Clear Passwords

To protect the inverter parameters from being modified arbitrarily, users can set a password. The specific steps are as follows:

  • Setting a Password: In the parameter setting mode, find A1-04 (password setting), enter the desired password value, and then press the ENTER button to confirm. Next, enter the same password value in A1-05 (password) for confirmation.
  • Clearing a Password: To clear the set password, simply set the password values in both A1-04 and A1-05 to 0.

3. Parameter Initialization

When it is necessary to restore the inverter to its factory default settings, parameter initialization can be performed. The specific steps are as follows:

  • In the parameter setting mode, set A1-03 to 2220 (2-wire sequence control initialization) or 3330 (3-wire sequence control initialization), and then press the ENTER button to confirm. At this point, the inverter will be restored to its factory default settings.

4. Using the DWELL Function

The DWELL function can temporarily maintain the output frequency during motor startup or stoppage to prevent motor stall. The specific setting steps are as follows:

  • In the parameter setting mode, find b6-01 and b6-02, and set the DWELL frequency and time during startup respectively. For example, set b6-01 to 5Hz and b6-02 to 2s, so that the motor will maintain a 5Hz output for 2 seconds during startup.

5. Using the Speed Search Function

The speed search function can automatically search and set the appropriate output frequency when the motor stalls or restarts. The specific usage method is as follows:

  • In the parameter setting mode, set b3-05 to the speed search wait time (e.g., 1s). Then, trigger the speed search function through an external signal when needed, and the inverter will automatically search and set the appropriate output frequency.
V1000 labeled wiring diagram

II. Terminal Functions and Wiring Settings

1. Realizing Forward and Reverse Start/Stop Functions

To realize the forward and reverse start/stop functions of the motor, it is necessary to correctly wire and set relevant parameters. The specific steps are as follows:

  • Wiring: Connect the forward start signal to terminal S1, the reverse start signal to terminal S2, and the stop signal to terminal S3.
  • Parameter Settings: In the parameter setting mode, set b1-02 to 1 (LOCAL/REMOTE selection), and set H1-01 and H1-02 to the input terminals for forward and reverse commands (e.g., S1 and S2) respectively. At the same time, set H1-03 to the input terminal for the stop command (e.g., S3).

2. Realizing External Potentiometer Speed Regulation

The external potentiometer speed regulation function allows users to change the output frequency of the inverter by adjusting the resistance value of an external potentiometer. The specific implementation method is as follows:

  • Wiring: Connect the output signal of the external potentiometer to terminal A1 of the inverter (multi-function analog input terminal).
  • Parameter Settings: In the parameter setting mode, set b1-01 to 1 (control circuit terminal frequency command), and set H3-01 to 0 (0~10V input). At the same time, adjust the values of H3-04 (input gain) and H3-05 (input offset) according to actual needs.

III. Fault Code Analysis

The Yaskawa V1000 series inverter has a comprehensive fault diagnosis function. When a fault occurs in the inverter, the corresponding fault code will be displayed on the operation panel. The following are some common fault codes, their meanings, and solutions:

  • CPF02: A/D converter fault. Possible causes include control circuit damage, control circuit terminal short circuit, etc. Solutions include checking the control circuit connection and replacing the inverter.
  • CPF06: EEPROM data anomaly. Possible causes include control circuit damage, power being cut off during the initialization process, etc. Solutions include re-executing the initialization operation and replacing the inverter.
  • Uv1: Main circuit undervoltage. Possible causes include too low power supply voltage, power supply phase loss, etc. Solutions include checking the power supply voltage and power supply wiring.
  • oH1: Heatsink overheat. Possible causes include too high ambient temperature, excessive load, etc. Solutions include improving heat dissipation conditions and reducing the load.

When a fault occurs in the inverter, users should refer to the fault code displayed on the operation panel, combine the above analysis methods and solutions for troubleshooting and handling. If the problem cannot be solved, users should promptly contact professional technicians for repair.

IV. Conclusion

The Yaskawa V1000 series inverter, as a high-performance vector control inverter, boasts rich functions and flexible setting options. Through the introduction in this article, users can better understand and utilize this equipment to achieve precise motor control and efficient operation. At the same time, users should also regularly check and maintain the inverter to ensure its long-term stable operation.

Posted on Leave a comment

User Manual Guide for Yaskawa Inverter A1000 Series

The Yaskawa Inverter A1000 Series is a high-performance vector control inverter widely used in various industrial control applications. This document aims to provide users with a detailed guide, covering the function explanation of the operation panel, password setting and cancellation, parameter initialization settings, external terminal start/stop and potentiometer speed adjustment settings, as well as common fault codes and troubleshooting methods.

Function Description Diagram of Yaskawa A1000 Series Inverter Operation Panel

I. Function Explanation of the Operation Panel (Operator)

The operation panel of the Yaskawa Inverter A1000 Series integrates multiple functions, facilitating user parameter settings and status monitoring. Below are the main functions of the operation panel:

  1. Display and Operation: The operation panel features an LED display and multiple operation keys, including the “LOCAL/REMOTE” key and the “STOP” key, allowing users to perform local or remote operations and stop the inverter.
  2. Password Setting and Cancellation:
    • Password Setting: Enter the parameter setting mode and set the password by configuring A1-04 (Password) and A1-05 (Password Setting). The specific steps are: First, press the “ESC” key to enter the parameter setting mode, then select A1-05 and input the password value, and finally press the “ENTER” key to confirm.
    • Password Cancellation: To cancel the set password, set A1-04 (Password) to the same value as A1-05 (Password Setting), then re-enter the parameter setting mode and set both A1-04 and A1-05 to 0.
  3. Parameter Initialization Settings: Set A1-03 (Initialization) to choose different initialization methods. Common options include:
    • 1110: Initializes based on user settings, restoring parameters to user-saved values.
    • 2220: Initializes for 2-wire sequential control, restoring factory settings for 2-wire sequential control.
    • 3330: Initializes for 3-wire sequential control, restoring factory settings for 3-wire sequential control.
    • 5550: Resets oPE04, used for parameter reset after replacing the detachable terminal block.

II. External Terminal Start/Stop and Potentiometer Speed Adjustment Settings

To enable external terminal start/stop and potentiometer speed adjustment functions for the Yaskawa Inverter A1000 Series, the following parameter and wiring settings are required:

  1. Parameter Settings:
    • Set b1-01 (Run Command Selection 1) to 2, selecting external terminal run commands.
    • Set b1-02 (Run Command Selection 2) to 0, selecting the 2-wire sequential control mode for forward/stop and reverse/stop (or select other modes as needed).
    • Set H1-01 and H1-02 to 40 and 41, respectively, assigning the S1 and S2 terminals as input for forward and reverse run commands.
  2. Wiring Settings:
    • Connect the external start/stop buttons to the S1 and S2 terminals.
    • Connect the center tap of the potentiometer to the common terminal of the inverter (e.g., 0V), and connect the ends of the potentiometer to the analog input terminals of the inverter (e.g., A1 and +V or -V) to achieve potentiometer speed adjustment.
Yaskawa A1000 series inverter control circuit wiring diagram

III. Common Fault Codes and Troubleshooting Methods

The Yaskawa Inverter A1000 Series may encounter various faults during operation. Below are some common fault codes, their meanings, and troubleshooting methods:

  1. oL1 (Motor Overload):
    • Meaning: The motor current exceeds the rated value, triggering the overload protection.
    • Troubleshooting: Check if the motor load is too heavy, adjust the load or increase the motor capacity; check the motor wiring for correctness to avoid line-to-line shorts; check the inverter parameter settings to ensure the motor parameters match the actual motor.
  2. Uv1 (Main Circuit Undervoltage):
    • Meaning: The main circuit DC voltage is lower than the set value.
    • Troubleshooting: Check if the power supply voltage is stable and within the allowable range; check the power wiring for firmness to avoid poor contact; check if the internal capacitors of the inverter are aged or damaged.
  3. oH1 (Inverter Overheat):
    • Meaning: The internal temperature of the inverter is too high, triggering the overheat protection.
    • Troubleshooting: Check the installation environment of the inverter to ensure adequate ventilation; check if the inverter heat sink is clean and free of dust accumulation; check if the cooling fan is working properly and replace it if faulty.
  4. oPE03 (Improper Selection of Multi-function Input):
    • Meaning: There is a conflict or error in the function assignment of the multi-function input terminals.
    • Troubleshooting: Check the parameter settings of H1-01 to H1-08 to ensure the function assignment of each terminal is correct and without duplication; check if any unused terminals have been assigned functions mistakenly.
  5. Er-11 (Motor Speed Fault):
    • Meaning: During rotary self-learning, the motor speed is abnormal.
    • Troubleshooting: Check the connection between the motor and the inverter for correctness; check the wiring and settings of the PG (encoder); re-perform self-learning with the motor and mechanical system connected.

The above are only some common fault codes and their troubleshooting methods. In actual use, other faults may occur. Users should refer to the fault code table in the inverter user manual and take corresponding measures based on specific fault codes and meanings. Additionally, regular maintenance and inspection of the inverter are important means to prevent faults.

Posted on Leave a comment

User Manual for Yaskawa GA700 Series Inverte

I. Detailed Explanation of Operator Panel Functions

Mode and menu diagram of Yaskawa inverter GA700 operation panel

The operator panel of the Yaskawa GA700 Inverter serves as the primary interface for user interaction, providing a wealth of functions and setting options. Below are the main functions and operation instructions for the operator panel:

  1. Display and Setting Functions
    • Monitoring Display: The operator panel can display various status information of the inverter, such as frequency command, output frequency, current, voltage, etc. Users can select the desired monitoring item using the up, down, left, and right keys.
    • Parameter Settings: Through the operator panel, users can access and modify various inverter parameters to meet different application requirements. Press the “MENU” key to enter the menu, then use the up and down keys to select the desired parameter, and press the “ENTER” key to enter the parameter setting interface.
  2. Restoring Factory Default Parameters
    If it is necessary to restore the inverter parameters to their factory defaults, follow these steps:
    • Press the “MENU” key to enter the menu.
    • Use the up and down keys to select the “Tools” menu, then press the “ENTER” key to enter.
    • In the “Tools” menu, use the up and down keys to select the “Parameter Initialization” option, then press the “ENTER” key to enter.
    • Select “Factory Default Initialization” and press the “ENTER” key to confirm. The system will prompt for confirmation; press the “YES” key to initialize, and the inverter parameters will be restored to their factory defaults.
  3. Setting External Terminal Start
    External terminal start refers to controlling the start and stop of the inverter through external signals (such as buttons, switches, etc.). Follow these steps to set external terminal start:
    • Ensure that the external control circuit is correctly wired.
    • Enter the “Application” menu on the operator panel and select “Frequency Command Source 1” (b1-01).
    • Set b1-01 to “0”, indicating that the operator panel is used to input the run command. If external terminal start is desired, set it to “2” (indicating that the control circuit terminal is used to input the run command).
    • Set other related parameters as needed, such as the function selection for the external start terminal (H1-xx parameter).
Yaskawa inverter GA700 control circuit wiring

II. Settings for External Terminal Start and External Potentiometer Speed Control

  1. External Terminal Start Settings
    The settings for external terminal start include wiring and parameter settings:
    • Wiring Steps:
      • Connect one contact of the external start button or switch to the “RUN” terminal of the inverter (e.g., terminal S1).
      • Connect the other contact to the common terminal of the inverter (e.g., terminal CM).
    • Parameter Setting Steps:
      • Enter the “Application” menu on the operator panel and select “Frequency Command Source 1” (b1-01).
      • Set b1-01 to “2”, indicating that the control circuit terminal is used to input the run command.
      • Enter the “Multi-function Input Terminals” menu (H1-xx), select the corresponding terminal (e.g., H1-01), and set its function to “Run Command” (e.g., set value “1”).
  2. External Potentiometer Speed Control Settings
    External potentiometer speed control allows users to adjust the output frequency of the inverter by rotating the potentiometer, thereby controlling the motor speed.
    • Wiring Steps:
      • Connect the three terminals of the potentiometer to the “AI1” (Analog Input 1) terminal of the inverter, the common terminal (e.g., terminal CM), and ground (GND), respectively.
    • Parameter Setting Steps:
      • Enter the “Application” menu on the operator panel and select “Frequency Command Source 1” (b1-01).
      • Set b1-01 to “1”, indicating that analog input is used as the frequency command.
      • Enter the “Multi-function Analog Input” menu (H3-xx), select “Terminal A1 Function Selection” (H3-02), and set it to “Main Speed Frequency Command” (set value “0”).
      • Adjust “Terminal A1 Input Gain” (H3-03) and “Terminal A1 Input Offset” (H3-04) as needed to match the output range of the potentiometer and the frequency command range of the inverter.

III. Inverter Fault Codes and Handling Methods

When the Yaskawa GA700 Inverter encounters a fault, it will display the corresponding fault code. Below are some common fault codes, their meanings, and handling methods:

  1. oC (Overcurrent)
    • Meaning: The inverter output current exceeds the rated value.
    • Handling Method: Check if the motor load is too heavy, if there are short circuits or grounding faults, and adjust inverter parameters (such as acceleration/deceleration time, torque limit, etc.).
  2. oV (Overvoltage)
    • Meaning: The DC bus voltage of the inverter is too high.
    • Handling Method: Check if the input power supply is stable, if there are issues with the braking resistor (overheating or damage), and adjust inverter parameters (such as deceleration time, overvoltage suppression function, etc.).
  3. oH (Overheat)
    • Meaning: The internal temperature of the inverter is too high.
    • Handling Method: Check if the installation environment of the inverter is well-ventilated, if there is dust accumulation or blocked heat sinks, clean the heat sinks, and check if the cooling fan is working properly.
  4. FbL (PID Feedback Lost)
    • Meaning: The feedback signal is lost in PID control.
    • Handling Method: Check if the PID feedback loop is correctly wired, if the feedback sensor is working properly, and adjust PID control parameters.
  5. EF (External Fault)
    • Meaning: An external fault signal has been received.
    • Handling Method: Check if the external fault signal source is normal, resolve the external fault, and reset the inverter.

The above are only some common fault codes and their handling methods. In actual use, more fault codes may be encountered. Users should refer to the inverter’s technical manual to understand the meanings of various fault codes and the corresponding handling methods to ensure the normal operation of the inverter.

Through this introduction, users should now have a comprehensive understanding of the operator panel functions, settings for external terminal start and external potentiometer speed control, and fault code handling for the Yaskawa GA700 Inverter. In practical applications, users should set the inverter parameters reasonably based on specific application requirements and environmental conditions to ensure the safe and stable operation of the inverter.

Posted on Leave a comment

Operation Guide for Yaskawa Inverter H1000 Series User Manual

I. Operation Panel Function Introduction and Usage Instructions

The operation panel of the Yaskawa Inverter H1000 series serves as its control hub, enabling parameter setting, monitoring of operating status, and fault diagnosis. The primary buttons and functions on the operation panel include:

Function diagram of Yaskawa INVERTER H1000 operation panel
  • ESC: Exits the current mode or cancels operations.
  • RUN: Starts the inverter.
  • STOP: Stops the inverter.
  • ENTER: Confirms inputs or enters parameter settings.
  • RESET: Resets faults.
  • ALM: Displays fault or warning messages.
  • DIGIT: Selects digits during parameter setting.
  • OPRATOR: The operation panel display, which shows various information and parameters.

Parameter Initialization

Parameter initialization restores the inverter’s settings to the factory defaults. The steps are as follows:

  1. Enter Initialization Mode: Press the “ESC” button on the operation panel, then press “ENTER” to enter the parameter setting mode.
  2. Select Initialization Parameter: Use the “DIGIT” buttons to select parameter “A1-03” and press “ENTER”.
  3. Set Initialization Value: Set the value of “A1-03” to “2220” or “3330” for initialization of 2-wire or 3-wire sequential control, respectively.
  4. Confirm and Save: Press “ENTER” to confirm the setting, and the inverter will automatically restart and complete the initialization.

Setting and Resetting Passwords

To protect the inverter settings from unauthorized changes, passwords can be set. The steps are as follows:

  1. Enter Password Setting Mode: In the parameter setting mode, select “A1-04” and press “ENTER”.
  2. Enter Password: Use the “DIGIT” buttons to input a 4-digit password and press “ENTER” to confirm.
  3. Confirm Password: Enter the same password again to confirm the setting and press “ENTER”.

To reset the password, simply enter the correct password in the password input interface to unlock the parameter settings.

Wiring diagram of Yaskawa INVERTER H1000 series control circuit

II. Terminal Start/Stop and External Potentiometer Speed Adjustment

To achieve terminal start/stop and external potentiometer speed adjustment, the corresponding control terminals need to be connected and parameters set accordingly.

Wiring Instructions

  1. Start/Stop Terminals: Typically, use terminals S1 (Run) and S2 (Stop). Closing (connecting) terminal S1 starts the inverter, while closing terminal S2 stops it.
  2. External Potentiometer: Use terminal A1 as the input terminal for the external potentiometer. Connect the potentiometer’s output to terminal A1 and adjust the potentiometer to change the frequency command.

Parameter Settings

  1. Run Command Selection: Set parameter “b1-01” to “10” to select the operation panel as the frequency command source.
  2. Multi-function Input Settings: Set parameter “H1-01” to “04” (Run command) and “H1-02” to “05” (Stop command), corresponding to the functions of terminals S1 and S2, respectively.
  3. Analog Input Gain and Offset: Adjust parameters “H3-03” (Gain) and “H3-04” (Offset) according to the output range of the external potentiometer to ensure that the frequency command changes proportionally with the potentiometer output.

III. Crane Control Wiring and Parameter Setup

In crane applications, special attention must be paid to safety control and precise speed regulation.

Wiring Instructions

  1. Main Circuit Wiring: Connect the inverter’s R/L1, S/L2, and T/L3 terminals to the crane motor according to its voltage and power requirements.
  2. Control Circuit Wiring: In addition to the basic start/stop terminals, emergency stop, limit switches, and other safety control terminals also need to be connected.
  3. PG (Encoder) Wiring: For cranes requiring precise speed control and positioning, connect the PG encoder and output its signals to the inverter’s PG option card.

Parameter Settings

  1. Control Mode Selection: Set parameter “A1-02” to the appropriate vector control mode (e.g., Vector Control with PG) to ensure precise speed and position control.
  2. PG Parameter Settings: Set parameters such as “F1-06” (PG Output Division Ratio) and “F1-12/F1-13” (PG Gear Ratio) according to the encoder specifications.
  3. Safety Function Settings: Enable the external emergency stop function and set the relevant parameter, such as “H2-01” (Multi-function Contact Output Selection), to output an emergency stop signal.
  4. Speed Search Function: For heavy-duty applications like cranes, it is recommended to enable the speed search function to improve stability and safety during startup. Set parameter “b3-01” to effective and adjust other related parameters as needed.

IV. Fault Code Meanings and Solutions

The Yaskawa Inverter H1000 series has comprehensive fault self-diagnosis functions. When a fault occurs, the operation panel will display the corresponding fault code. Below are the meanings of some common fault codes and their solutions:

  • CPF00/CPF01: Control circuit fault. Possible causes include incorrect control circuit wiring or damaged circuit boards. The solution is to check the control circuit wiring and replace the circuit board if necessary.
  • oH: Overheating of the heatsink. Possible causes are high ambient temperature, excessive load, or a faulty cooling fan. The solution is to improve ventilation, reduce the load, or replace the cooling fan.
  • Uv: Undervoltage in the main circuit. Possible causes are low supply voltage or phase loss in the power supply. The solution is to check the supply voltage and wiring to ensure they are normal.
  • oL1: Motor overload. Possible causes are excessive load or improper motor parameter settings. The solution is to reduce the load or reset the motor parameters.

When a fault occurs in the inverter, first check the fault code displayed on the operation panel to identify the cause and follow the corresponding solution. If the issue cannot be resolved, promptly contact a professional technician for repairs.

Through this operation guide, users can better understand and operate the Yaskawa Inverter H1000 series, ensuring its stable operation in various applications.

Posted on Leave a comment

Repairing the Stubborn GF Fault in Yaskawa 616G3 55kW Frequency Converter

Repairing a frequency converter, especially one that reports a stubborn ground fault (GF), can be a challenging and frustrating task. Recently, I encountered such an issue with a Yaskawa 616G3 55kW frequency converter. Despite the common advice to replace the board, I delved deeper into the problem, determined to find a logical solution. This article outlines the step-by-step process I followed to diagnose and repair the GF fault without replacing any major components.

Initial Diagnosis and Background

The Yaskawa 616G3 frequency converter had been out of service for two to three years before it arrived at our repair department. Upon inspection, we found that two of the three-phase power input rectifier modules and two of the six inverter IGBT modules were damaged. The driver board had also suffered some component damage due to the module failure.

The GF fault typically indicates an issue with the drive circuit or the IGBT module itself, especially during the initial startup stage when the three-phase output voltage has not yet been established. Understanding the structure of the protection circuit helped narrow down the potential causes. The GF and OC (load-side short circuit) fault signals are fed directly to the CPU by the protection circuit of the driving circuit board.

Driver and Protection Circuits Inspection

The driver circuit of the Yaskawa frequency converter includes six pulse signals from the CPU, isolated and amplified by six TLP250 ICs, and sent to the IGBT modules. Additionally, six TLP750 ICs form a module fault protection circuit, reporting GF and OC signals to the CPU. There are also three 2501 optocouplers responsible for detecting fuse status.

After disconnecting the driver board and CPU motherboard, I replaced the damaged components in the power amplifier circuit. The switch power supply and motherboard appeared to be functioning correctly. I manually cleared other potential faults, such as overvoltage, undervoltage, overheating, and fan issues, to ensure the drive circuit could output normal excitation pulses.

Addressing the FU Fault

During the initial tests, the circuit reported an FU (fuse) fault. After inspecting the relevant optocoupler components and circuit components, I found that the copper foil strip of the N lead was broken due to mold. This caused the fuse detection circuit to assume the fuse was broken. I repaired the moldy copper foil strip and retested the circuit, which resolved the FU fault.

Further Investigation and Component Replacement

With the FU fault resolved, I pressed the RUN button on the operation panel and measured the six pulses output by the drive circuit, all of which were normal. However, the GF fault persisted. I re-inspected the driver board, measuring all circuit components and short-circuiting the GF fault feedback optocoupler, but the GF fault still tripped.

Further investigation revealed a poor contact between a diode in the IGBT voltage drop detection circuit and the copper foil strip. I also found that the positive voltage of the W-phase transistor driver pulse was low, indicating an issue with the driver IC. After replacing the faulty A3320 IC, the output pulse amplitude returned to normal.

The Stubborn GF Fault

Despite repairing the identified issues, the GF fault still occurred during startup. I used the fault zone cutting method to narrow down the fault range, eventually finding that the IGBT driver circuit (protection circuit) of the U-arm was prone to reporting the GF fault. A diode with a poor contact was identified and replaced.

However, even after these repairs, the GF fault persisted. I then conducted a series of tests, including short-circuiting the module detection circuit’s transistors to relieve the fault protection function. During these tests, I observed an abnormal phenomenon: the series-connected light bulb lit up with high brightness after the start signal was activated, indicating a potential issue with the IGBT modules or driving circuit.

Discovering the Common Cause

After ruling out issues with the driving circuit and modules, I focused on the common factors that could affect all six protection circuits. I noticed that the leads of the capacitor bank, which were longer due to the repair setup, could be introducing inductance into the circuit. This inductance could generate induced electromotive force and current, interfering with the module fault detection circuit.

To test this hypothesis, I formally installed the machine, limiting the lead inductance of the capacitor bank within the allowable value. After the installation, the Yaskawa frequency converter operated normally without tripping the stubborn GF fault.

Conclusion

Repairing the GF fault in the Yaskawa 616G3 55kW frequency converter was a challenging but rewarding experience. By thoroughly understanding the protection circuit and methodically diagnosing each potential issue, I was able to repair the machine without replacing any major components. The key to solving the stubborn GF fault was identifying the common cause—inductance in the capacitor bank leads—and addressing it through proper installation.

This case study highlights the importance of logical reasoning and thorough investigation in repairing electronic equipment. It also demonstrates that, with patience and persistence, even stubborn faults can be resolved without resorting to costly board replacements.