Posted on Leave a comment

Ozone Analyzer: Composition, Working Principle, Faults, and Repairs

I. Introduction to Ozone Analyzer

  1. Basic Composition
    • The ozone analyzer primarily consists of a low-pressure UV lamp, optical wave filter, incident UV light reflector, ozone absorption cell, sample photoelectric sensor, sampling photoelectric sensor, output display, and circuit components. These components work in unison to achieve precise measurement of ozone concentration.
  2. Working Principle
    • The working principle of the ozone analyzer is based on the absorption characteristic of ozone to specific wavelength UV light. The UV absorption method, utilizing ozone’s characteristic absorption of 254nm wavelength UV light and adhering to the Beer-Lambert Law, is the most prevalent. By measuring the intensity change of UV light before and after passing through the ozone gas, the ozone concentration can be calculated.
  3. Classification
    • According to measurement range and application, ozone analyzers can be divided into high-concentration and low-concentration types. High-concentration analyzers are suitable for ozone generator manufacturers to test product output and for health and epidemic prevention departments to monitor ozone sterilization products. Low-concentration analyzers are ideal for monitoring environmental atmospheric concentrations and detecting ozone leakage from sources such as negative ion generators, photocopiers, and ozone sterilizers.
  4. Characteristics
    • High Precision: The ozone analyzer offers high measurement accuracy, reflecting precise changes in air ozone concentration.
    • Compact and Portable: Modern designs are compact and portable, facilitating on-site monitoring and mobile use.
    • Low Power Consumption: Some models feature low power consumption, enabling long-term use without frequent battery or power source replacement.
    • Data Recording and Transmission: Advanced models incorporate data loggers and real-time clocks, enabling data recording and transmission for subsequent analysis and processing.
  5. Application Areas
    • Ozone analyzers are widely used in ozone production workshops, petroleum, chemical, textile, paper, pharmaceutical, and flavor & fragrance industries, water treatment, and food & medicine sterilization workshops. They are also ideal for remote on-site monitoring, urban network monitoring, scientific experiments, research studies, and process monitoring.
  6. Maintenance and Upkeep
    • Regular maintenance and upkeep, including cleaning the instrument surface, checking sensor and circuit component status, and calibrating the instrument, are essential for ensuring accuracy and stability. Care should be taken to avoid environmental interference and instrument damage.
  7. Precautions
    • Ensure the instrument operates in a stable environment, avoiding high temperatures, humidity, and strong magnetic fields.
    • Regularly calibrate and maintain the instrument to ensure measurement accuracy and reliability.
    • Observe safety precautions during measurements, avoiding direct contact with high-concentration ozone gas to prevent harm.

II. Common Faults and Repair Methods for Ozone Analyzers

  1. Inaccurate Display or Data Loss
    • Faults: Sensor aging, environmental interference, insufficient storage space, or faulty storage media.
    • Repair Methods: Regularly inspect and replace sensors, ensure suitable operating conditions, timely export data and clear storage, and replace damaged storage media.
  2. Alarm Function Failure
    • Faults: Incorrect alarm settings, damaged or loose alarms.
    • Repair Methods: Reset alarm thresholds and inspect, repair, or replace alarms.
  3. Unstable Values
    • Faults: Unstable ozone concentration values, continuously rising display on the LCD screen.
    • Repair Methods: Ensure good insulation between the transmitter and the box, and check solid-state output signals and relays.
  4. No Display or Abnormal Display
    • Faults: No ozone concentration display after power-on, only upper or lower limits shown.
    • Repair Methods: Check for 24V power supply to the ozone transmitter, ensure secure connections between sensors and the mainboard, and adjust transmitter zero point.
  5. Slow Instrument Response
    • Faults: Slow response time, failing to meet requirements.
    • Repair Methods: Set a reasonable analyzer averaging time, clear condensate from pipelines, and set a suitable indoor air conditioning temperature. Clean the optical cell, reinstall, and run for a period to check for leaks.
  6. Other Parameter Inaccuracies
    • Faults: Simultaneous inaccuracies in pressure, temperature, flow, and large concentration display fluctuations.
    • Repair Methods: Replace the CPU or driver board to address A/D or multi-switch damage. Inspect and replace the mainboard, driver board, or related components to ensure normal control signal output.

III. Ozone Analyzer Brands and Models Repaired by Longi Ectromechanical Company

  1. 2B Technologies
    • Model 106-L: 0-100ppm
    • Model 106-M: 0-1000ppm
    • Model 106-H: 0-20wt%
    • The 106 series portable ozone analyzer uses UV absorption for on-site rapid measurements with high sensitivity and precision.
  2. Thermo Fisher Scientific
    • Model 49I: Utilizes UV absorption (UV photometry) to measure ozone concentration, widely used in environmental air quality monitoring.
  3. Teledyne API
    • Model T400: Based on UV absorption technology, provides continuous, real-time ozone concentration data, suitable for long-term monitoring.
  4. Horiba
    • Model APOA-370: Uses UV absorption technology with high sensitivity and stability, suitable for environmental monitoring and research applications.
  5. Eco Physics
    • Model nCLD 822 Mh: Utilizes chemiluminescence detection technology for precise measurements at very low concentrations, suitable for laboratories and research institutions.
  6. Aeroqual
    • Series 500: A portable device using electrochemical sensor technology, suitable for indoor and outdoor air quality monitoring.
  7. Lumasense Technologies
    • Model INNOVA 1412i: A multi-gas detector capable of measuring multiple gases, including ozone, suitable for various industrial and scientific applications.

Conclusion
The stable operation and data accuracy of ozone analyzers rely on routine maintenance and management. Understanding common faults and repair methods is crucial for reducing instrument failure rates, improving operational efficiency, and ensuring monitoring data reliability. Regular inspections, maintenance, and calibration according to manufacturer recommendations are advised.

Longi Ectromechanical Company has nearly 30 years of experience in repairing ozone analyzers, enabling rapid repairs for various instruments. Additionally, we recycle and sell used ozone analyzers. For more information, please contact us.

Leave a Reply

Your email address will not be published. Required fields are marked *