Posted on Leave a comment

Precision Chillers: Working Principle, Usage, and Common Fault Repair Guide

Precision Chillers: Working Principle, Usage, and Common Fault Repair Guide

I. Overview

Precision chillers are efficient and stable industrial auxiliary equipment widely used in fields requiring precise temperature control, such as laboratories, semiconductor manufacturing, pharmaceutical production, and plastic processing. By circulating cooling water or other cooling media, they provide a constant low-temperature environment for various equipment and systems, ensuring process stability and product quality.

II. Working Principle

The working principle of precision chillers is based on the heat exchange principle in thermodynamics. The main components include a compressor, condenser, evaporator, expansion valve, and water circulation system. The specific working principle is as follows:

  • Refrigerant Cycle: The refrigerant is compressed into high-temperature, high-pressure gas by the compressor, then enters the condenser where it releases heat through a cooling fan or natural cooling, condensing into high-pressure liquid. After passing through the expansion valve, the high-pressure liquid enters the evaporator, evaporates and absorbs heat under low pressure, absorbing heat from the circulating water and lowering its temperature.
  • Water Circulation System: Low-temperature cooling water is pumped to the equipment or system needing cooling, absorbs heat, and then returns to the evaporator for re-cooling, forming a closed cycle.
  • Automatic Control System: Through temperature sensors and controllers, the water temperature is monitored and adjusted in real-time to ensure it remains stable within the set range. The system is also equipped with protection and alarm devices to prevent equipment overload, refrigerant leakage, and other abnormalities.

III. Usage

  1. Installation and Debugging: Install the precision chiller correctly according to the equipment manual, and connect the water source, power supply, and drainage pipeline. Conduct a comprehensive inspection before starting to ensure all components are tightly connected and leak-free. Then, proceed with debugging and set the required water temperature and range.
  2. Startup and Operation: Turn on the power and start the compressor and water pump. Observe the indicator lights and display on the control panel to ensure the equipment is running normally. Adjust the water temperature and flow rate as needed to meet the cooling requirements of different equipment and systems.
  3. Maintenance and Upkeep: Regularly check the water quality and level of the cooling medium, and replace or replenish as necessary. Clean the surface dust and dirt on the condenser and evaporator to improve heat dissipation efficiency. Regularly inspect the operating status of key components such as the compressor and water pump, and promptly identify and address potential faults.

IV. Common Faults and Repair Methods

  1. Insufficient Cooling Water Flow: Check if the water pump is working normally and if there are any blockages or leaks. Clear debris and dirt from the water pump inlet and outlet to ensure smooth water flow. If the water pump is severely damaged, replace it with a new one.
  2. High Water Temperature: Check if the condenser’s heat dissipation effect is good and if there is any dust or debris affecting heat dissipation. Clean the dust and dirt on the condenser surface and ensure the cooling fan is running normally. If the problem persists, it may be due to insufficient or leaking refrigerant; replenish the refrigerant and check for leakage points for repair.
  3. Compressor Fault: The compressor is one of the core components of the precision chiller, with common faults including overload, overheating, and starting difficulties. Check the compressor’s operating current and voltage for normality, and listen for any abnormal sounds or vibrations. If the compressor is severely damaged, replace it with a new one.
  4. Control System Fault: Issues such as inaccurate temperature display or control failure may be due to a damaged temperature sensor or controller fault. Check if the temperature sensor is damaged or detached, and replace it if necessary. If the controller fault is severe, replace it with a new one or seek professional repair.
  5. Other Faults: For issues such as pipeline leaks and damaged electrical components, take corresponding repair measures based on the specific situation. Promptly identify and address fault points to ensure the equipment resumes normal operation.

V. Common Faults and Repair Methods for Specific Models

  • JULABO
    • F Series: FL2503, FL3003, FL601
    • FC Series: FC600, FC1200
  • Lauda
    • Proline Series: RP 845, RP 1290
    • Ultracool Series: UC 6, UC 12
  • Huber
    • Unichiller Series: Unichiller 003-MPC, Unichiller 005-MPC, Unichiller 009-MPC
    • Minichiller Series: Minichiller 300, Minichiller 600
  • Thermo Fisher Scientific
    • ThermoFlex Series: ThermoFlex 900, ThermoFlex 1400, ThermoFlex 2500
    • NESLAB HX Series: HX-150, HX-300, HX-750
  • PolyScience
    • DuraChill Series: DuraChill 6000, DuraChill 8000
    • Benchtop Chillers Series: 6000 Series, 8000 Series
  • VWR
    • VWR Series: VWR 1177PD, VWR 1180S, VWR 1187MD
  • Buchi
    • F Series: F-105, F-108, F-114
  • LabTech
    • H Series: H50-500, H50-1000
  • Peter Huber Kältemaschinenbau AG
    • Minichiller Series: Minichiller 300, Minichiller 600
    • Unichiller Series: Unichiller 003-MPC, Unichiller 005-MPC
  • Across International
    • Ai Series: Ai C30-25, Ai C30-40
  • JULABO USA, Inc.
    • FL Series: FL1200, FL2500, FL4003
  • Yamato Scientific
    • AD Series: AD-100, AD-200
  • Edwards
    • nXDS Series: nXDS6i, nXDS10i, nXDS15i
  • TAEevo Tech
    • TAEevo Tech Series: TAEevo Tech 051, TAEevo Tech 101
  • Grant Instruments
    • LT Ecocool Series: LT ecocool 150, LT ecocool 250
  • Haake (Thermo Scientific)
    • Phoenix II Series: Phoenix II C40P, Phoenix II C50P
  • Solid State (Japan)
    • ThermoCube
    • AHP-1202CPHC

Note: Longi Electromechanical Company has nearly 30 years of experience in repairing precision chillers and can quickly repair various instruments. They also recycle and sell various precision chillers. For inquiries, please contact us.

Leave a Reply

Your email address will not be published. Required fields are marked *